Rhinella marina

System: Freshwater_terrrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Amphibia</td>
<td>Anura</td>
<td>Bufonidae</td>
</tr>
</tbody>
</table>

Common name

bufo toad (English), Suriname toad (English), giant American toad (English), macao (English, Dominican Republic), bullfrog (English), maco pempen (English, Dominican Republic), marine Toad (English), Maco toro (English, Dominican Republic), kwapp (English, Caribbean), crapaud (English, Caribbean), giant toad (English), cane toad (English), Aga-Kröte (German)

Synonym

Bufo marinus, Schneider 1799
Bufo strumosus, Court 1858
Bufo agua, Clark 1916
Bufo marinis [sic], Barbour 1916
Bufo marinus, Mertens 1969
Bufo marinus marinus, Mertens 1972
Chaunus marinus, Frost et al. 2006

Similar species

Cane toads were introduced to many countries as biological control agents for various insect pests of sugarcane and other crops. The cane toads have proved to be pests themselves. They will feed on almost any terrestrial animal and compete with native amphibians for food and breeding habitats. Their toxic secretions are known to cause illness and death in domestic animals that come into contact with them, such as dogs and cats, and wildlife, such as snakes and lizards. Human fatalities have been recorded following ingestion of the eggs or adults.

Summary

Cane toads are heavily built with short legs. They can sometimes grow up to 30cm long, with 20cm not uncommon for females and and average of 12-15cm in many regions. Males are slightly smaller. Fingers lack webbing, but the toes are heavily webbed. Adults have a rough, warty skin, coloured tan, brown or dark brown, dull green or black. The tympanum is distinct, about one half to two thirds the size of the eye. Venom glands are aggregated together to form large and distinctive parotoid glands, found above each shoulder. These glands are able to ooze venom. (Gautherot, 2000)

Species Description

Cane toad eggs hatch within 24 to 72 hours of laying into tiny, shiny black tadpoles. Tadpoles metamorphose after two to seven weeks (Alford et al. 1995), becoming very small (10-12mm) terrestrial juveniles. These small juveniles experience very high mortality, and unlike adults or larger juveniles they tend to be diurnal. It has been estimated that less 0.5 percent of cane toads toad eggs survive to maturity. It takes a year for the toads to reach maturity, when they will be about 75mm long. Cane toads survival in the wild is unknown, but unlikely to be more than 5 years. Animals kept in captivity are estimated to live 10-40 years (Honolulu Zoo).

Lifecycle Stages

Cane toad eggs hatch within 24 to 72 hours of laying into tiny, shiny black tadpoles. Tadpoles metamorphose after two to seven weeks (Alford et al. 1995), becoming very small (10-12mm) terrestrial juveniles. These small juveniles experience very high mortality, and unlike adults or larger juveniles they tend to be diurnal. It has been estimated that less 0.5 percent of cane toads toad eggs survive to maturity. It takes a year for the toads to reach maturity, when they will be about 75mm long. Cane toads survival in the wild is unknown, but unlikely to be more than 5 years. Animals kept in captivity are estimated to live 10-40 years (Honolulu Zoo).
Uses
Bufotenine toxin produced by the cane toad is used as an aphrodisiac and hair-restorer in Japan. In mainland China it is used to lower the heart rate of patients undergoing cardiac surgery (Musgrave, 1996). The toxin is used by South American Indians on hunting arrows. The toxin is sometimes used as a narcotic by some people (Lever, 2001).
Cane toads were used for pregnancy testing in humans. A woman’s urine was injected subcutaneously into the lymph glands of a male toad, resulting in spermatozoa becoming present in the toad’s urine if the woman was pregnant (Berra, 1998 in Lever, 2001).

Habitat Description
Cane toads’ original habitat, before their dispersal by humans, was seasonal Amazonian savanna, with small fresh water lakes. Cane toads are found in rain forests, both in their native range and introduced range, such as in Hawai’i and New Guinea, though not at high densities (Fred Kraus pers.comm). However, they can now be found in many places, such as man-made ponds, gardens, drain pipes, debris, under cement piles and beneath houses. Cane toads will usually stay on dry land and reproduce in any shallow water near its surroundings. Toads and tadpoles are able to tolerate very high levels of salinity. Tadpoles have been observed in water, metres from the open ocean.

Reproduction
Cane toads breed between the months of April and September in the Northern Hemisphere and they can be heard calling their mates, beginning in late March. In the Southern Hemisphere, in Australia, it has been noticed that the male cane toad calls in any month of the year, peaking during the wet season. Every year the female cane toad produces two clutches of about 8,000 to 35,000 eggs. The eggs are externally fertilised by the male’s sperm. The eggs can be found floating on the surface of water in a jelly-like string or wrapped around vegetation and other debris in the water. The age and size of the female will determine how many eggs the toad will produce (Honolulu Zoo).

Nutrition
Cane toads eat “almost any terrestrial animal”, although they are more likely to consume animals active at ground level during the night. The major diet items are insects, including grass-hoppers, caterpillars and ants, together with millipedes and land snails (Hinkley, 1962 in SPREP, 2000).
The cane toad is opportunistic in its feeding habits and will consume almost anything that it is able to catch (Zug and Zug, 1979 in Lever, 2001). Terrestrial arthropods make up the bulk of the diet, but snails, crabs, small vertebrates (mammals, birds, lizards and frogs), pet food and human faeces may also be consumed (Lever, 2001). Cane toads will gorge themselves if food is in abundance. Unusual items that cane toads have been observed eating include rotting garbage, a coral snake (Micrurus circinalis), fledgling birds and a lit cigarette butt (Lever, 2001).
General Impacts
Cane toads will eat “almost any terrestrial animal”, although they are more likely to consume those active at
ground level during the night (Hinkley 1962). Covacevich and Archer, (1975) in their paper on the effects of the
cane toad on indigenous vertebrates in Australia, state that snakes, such as the carpet python, the black
headed python, death adder and some other snakes have been found dead with the cane toad in their mouths
or guts. Studies in Australia where the range of the cane toad is ever expanding have shown that the cane toad
plays an important role in structuring native anuran communities (Crossland, 2000) via direct and indirect
mechanisms and is thus a threat to the survival of native Australian fauna (Catling, P.C et al.2003).
Toads have been implicated in the decline of populations of monitor lizards in Guam (Jackson 1962, Dryden
1965). Pernetta and Watling (1978) consider that the toads do not interact with native frogs because they use
different habitats; the frogs are either along stream banks or in the foliage of dense forest. Villadolid (1956)
found rats and mice in stomachs of toads in the Philippine Islands. Hinkley concluded that this toad is
“economically neutral” because it consumes both “harmful” and “beneficial” invertebrates.
Secretions from the parotoid glands are produced when the toad is provoked or localised pressure is applied,
such as a predator grasping the toad in its mouth (NRM, 2001). The toxic secretions are known to cause illness
and death in both domestic and wild animals that come into contact with toads, such as dogs, cats, snakes and
lizards. The toxin causes extreme pain if rubbed into the eyes (NRM, 2001). Human fatalities have been
reported, but are probably confined to people who deliberately concentrate the toxin and then ingest it.
Overall, the major impacts are on predatory species that attempt to eat toads and then die; in particular,
species that normally specialise amphibians, such as Mertens water monitor in northern Australia.

Management Info
Preventative measures: The main controls on the spread of cane toads in southern Australia are quarantine
checks and public awareness and response. One publicity campaign on the north coast of New South Wales
resulted in 100 people collecting more than 900 cane toads.
Physical: Cane toads can be excluded from garden ponds and dams by a 50cm high barrier, such as a thick
hedge or a wire mesh fence. Toads may be killed humanely by putting them inside a plastic bag or container
and placing them in a freezer (Brandt and Mazzotti, 1990).
Biological: In 1994, the CSIRO Division of Wildlife and Ecology (Australia) was assessing the pathogenicity and
specificity of viruses against cane toads. Scientists at the CSIRO Animal Health Laboratory in Victoria have been
searching for biological controls of cane toads and in 2001 they began investigating gene technology as a
mechanism of control. Environment Australia have launched a project for the development of a cane toad
biological control. The aim is to develop a self disseminating viral vector to disrupt the development of the toad.
Scientists at the University of Adelaide (Australia) have isolated a sex pheromone in a native Australian frog;
they hope that a similar pheromone will be found in cane toads that could be used to disrupt the breeding cycle.
These are long term solutions.
Scientists at Sydney University have identified a parasitic worm that attacks the cane toads’ lungs, stunting
their growth and, in most cases, killing them. They believe the parasite has the potential to reduce toad
populations dramatically.

Pathway
Cane toads have been found on Norfolk Islands. Cane toads have been transported in Australia by large freight
trucks or ‘road trains’ (Sydney Morning Herald, 2002). Cane toads have been introduced to many locations
around the world as a biological control agent for crop pests (NRM, 2001).

Principal source: Lever, C. 2001. The Cane Toad: the history and ecology of a successful colonist. Westbury
FULL ACCOUNT FOR: Rhinella marina

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTE) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review:

Publication date: 2010-05-26

ALIEN RANGE

- [2] AMERICAN SAMOA
- [1] ANGUILLA
- [1] ARUBA
- [15] AUSTRALIA
- [2] BERMUDA
- [1] CAROLINE ISLANDS
- [1] COOK ISLANDS
- [1] DOMINICA
- [1] EGYPT
- [1] FRENCH POLYNESIA
- [3] GUADELOUPE
- [1] HAITI
- [1] JAMAICA
- [1] KIRIBATI
- [1] MARTINIQUE
- [6] MICRONESIA, FEDERATED STATES OF
- [6] NORTHERN MARIANA ISLANDS
- [17] PAPUA NEW GUINEA
- [1] PUERTO RICO
- [1] SAINT LUCIA
- [7] SOLOMON ISLANDS
- [1] TAIWAN
- [3] TUVALU
- [1] UNITED STATES MINOR OUTLYING ISLANDS

Red List assessed species 45: CR = 18; EN = 15; VU = 5; NT = 4; LC = 3

- Babina okinavana **EN**
- Cherax cuspidatus **LC**
- Dasyurus spartacus **NT**
- Euastacus blomfieldi **CR**
- Euastacus dalagarbe **CR**
- Euastacus fleckeri **EN**
- Euastacus gurumulayn **CR**
- Euastacus hirsutus **EN**
- Euastacus jagabarr **CR**
- Euastacus maccai **EN**
- Euastacus mirangudjin **CR**
- Euastacus pilosus **EN**
- Euastacus robertsi **CR**
- Euastacus simplex **VU**
- Euastacus sulcatus **VU**
- Euastacus urospinosus **EN**
- Euastacus valentulus **LC**
- Carettochelys insculpta **VU**
- Chlamydosaurus kingii **LC**
- Euastacus balanesis **EN**
- Euastacus clarkae **CR**
- Euastacus eungella **CR**
- Euastacus gamilaroi **CR**
- Euastacus gumar **EN**
- Euastacus gwinus **CR**
- Euastacus hystricosus **EN**
- Euastacus jagara **CR**
- Euastacus maidae **CR**
- Euastacus monteithorum **CR**
- Euastacus polysetosus **EN**
- Euastacus setosus **CR**
- Euastacus spinichelatus **EN**
- Euastacus suttoni **VU**

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Rhinella marina

BIBLIOGRAPHY

41 references found for Rhinella marina

Management information

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors' experience with that of other workers.

Summary: A small amount of information plus line drawings.

Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance. Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine Invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Vilizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:

The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].

Summary: Good information on cane toad control in Australia.

Summary: Discusses the most invasive freshwater fish in the Pacific region and also includes a checklist of introduced fish to the Pacific.

Hyatt, Alex and Humphrey, John. 1995. Biological Control of the Cane Toad in Australia. FROGLOG Number 15. CSIRO Australian Animal Health Laboratory.

Summary: Has information on efforts to use biological control on cane toads in Australia.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Summary: An extremely comprehensive text on all aspects of cane toad ecology and history. Has very detailed coverage of all the locations where cane toads have been introduced. An excellent resource for further information.

Synthèse des introductions d’hylides (rainettes) dans les Antilles françaises. Trois espèces exotiques et envahissantes sont...

Summary: An interesting article on the effect that the cane toad is having on the indigenous Aboriginal population of Australia’s Arnhem Land.
