Castor canadensis

System: Freshwater_terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Mammalia</td>
<td>Rodentia</td>
<td>Castoridae</td>
</tr>
</tbody>
</table>

Common name
Canadian beaver (English), castor (French), beaver (English), American beaver (English), North American beaver (English), castor americano (Spanish)

Synonym

Similar species
Castor fiber

Summary
Castor canadensis (beaver) is native to North America, and has been introduced to Tierra del Fuego in southern South America, Finland, France, Poland and Russia in recent times. In its introduced range, the damming activity of the beaver can cause flooding which can damage forests. They also have the ability to quickly cut down large numbers of trees. In Finland, they compete with native beaver populations. In their native range, they cause flooding on major highways by plugging highway culverts.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=981)

Species Description

Castor canadensis (beaver) is a large herbivorous rodent typically found near water. Adults may be up to 1200mm long and weigh between 18-47kg. Colour ranges from yellowish-brown to black with reddish-brown most common. Guard hairs are long and coarse and the under fur is dense and lead grey in colour. The tail is broad, scaly and dorsoventrally flattened. It is black in young animals but becomes lighter with age. Adaptations for aquatic life include nictitating membranes on the eyes, valvular ears and nose, lips closing behind incisors and webbed hind feet (Jenkins and Busher, 1979; Nummi, 2006).

Notes

Castor canadensis (beavers) can swim up to 8 km an hour. They secrete waterproofing oil from glands at the base of their tail.

Lifecycle Stages
The offspring are born fully furred and eyes wide open. They can swim within 24 hours and after several days they are also able to dive out of the lodge without any accompaniment. They leave the dam at two years of age (Anderson, 2002).
Uses
Castor canadensis (beavers) are trapped and used primarily for their pelt (Langan, 1991). Beavers are being reintroduced to areas where they have been made extinct to improve wetland ecosystems.

Habitat Description
Castor canadensis (beavers) are always found close to water and they require forest to provide food and building material (Nummi, 2006). Beavers have a unique ability to cut trees and this allows them to build mud and wood lodges in which they live, nest and store food. Lodges may be completely surrounded by water or built on the banks of ponds, lakes or streams. They are also able to build watertight dams which create ponds behind them where the beavers are then able to build lodges (Jenkins and Busher, 1979). This behaviour alters large areas of habitat and is the reason why beavers are termed "ecosystem engineers" (Nummi, 2006).

Reproduction
Castor canadensis are monogamous. They usually become sexually mature during their second winter at the age of 1.5 years, although it can be delayed until 2.5 years or later (Nummi, 2006). Beavers mate once a year during winter. Gestation lasts about 105 days and the sole litter is born in spring. Litter size is usually between three and four, but can vary from one to nine (Jenkins and Busher 1979; Hill 1982 in Nummi, 2006). Kits weigh about 500g at birth.

Nutrition
Castor canadensis (beavers) are "choosy generalist" herbivores. They eat leaves, twigs and bark of most species of woody plants growing near water and also herbaceous plants, particularly aquatics. Whilst they have a wide ranging diet they show a large preference for certain plant species such as aspen (*Populus* spp.) and willow (*Salix* spp.). Roots and rhizomes of water lilies are a particularly important source of winter food (Jenkins and Busher, 1979).
General Impacts

C. canadensis (beavers) are known as "ecosystem engineers" for their ability to alter the physical and chemical nature of water bodies and their adjacent terrestrial systems in both their native and introduced range (Nummi, 2006). Two recent studies have investigated the impacts of beavers on ecosystems in their introduced range in southern South America. Beavers have been found to cause significant reduction in forest cover up to 30m from water effectively removing riparian forest. In their introduced range of South America Beavers modify the original ecosystem from closed Nothofagus forest to a grass- and sedge-dominated meadow. Nothofagus forest and seedlings are suppressed by beavers but herbaceous plants have been shown to increase in number and diversity. Unfortunately most of the increase in herbaceous plant diversity is due to invasion of the areas by non-native species (Anderson* et al.*, 2006). Deforestation caused by *C. canadensis* also has the immediate effect of increased erosion due to exposed slopes (Lizzaralde* et al.*, 2004). Forests may not completely regenerate in meadows for more than 20 years after removal of beavers due to flooding and sediments completely covering the forest floor which impedes seedling germination and establishment (Martínez Pastur* et al.*, 2006). Anderson and Rosemand (2006) investigated the effect of beavers on the aquatic ecosystem and found that ponds created by beavers had increased productivity but at the expense of significantly reduced macroinvertebrate diversity. Via physical, chemical and geomorphological alterations, beavers modify the structure and function of entire biotic communities and ecosystems. Lizzaralde* et al.* (2004) found that beaver colonized sites in the Tierra del Fuego Archipelago, Argentina had submerged vegetation and algae indicative of high nitrogen concentrations. Wood debris from fallen trees causes an accumulation of organic material that modifies the biochemical composition of waters, sediments, soils and adjacent riparian areas. These alterations make beaver-altered sites more suitable for introduced fish species (*Salmo truttafario*, *Salvelinus fontinalis* and *Onchorhyncus mybis*) and sustained invertebrate communities typical of slow-water habitats (Lizzaralde* et al.*, 2004). Beavers dam the river in which their lodge occurs, and sometimes the dam breaks causing extensive flooding. Dams act as barriers to migration in the stream and also form areas of impounded water behind them, increasing water temperature (Alexander, 1998). Beavers are also known for their ability to rapidly clear a forested area, and also cause flooding to roads by plugging highway culverts (Jensen* et al.*, 2001).

Management Info

Most *C. canadensis* (beaver) management is through various forms of trapping for pelts. Demand for pelts has decreased so now there is little incentive for trappers to hunt beavers. Beaver colonies have been moved to other areas but in most cases other beavers move into the area and replace the beavers that were removed. Similar problems occur with trapping — removing the resident population simply allows other beavers to replace them. Dams in Canada have been blown up but it is a costly process and frequently new dams are created in the same place. Jensen* et al.* (2001) suggest installing oversized culverts as a way of discouraging beaver plugging activity. McKinstry and Anderson (1998) state that Hancock and Bailey traps are typically used for live trapping beavers, but are bulky and expensive, and suggest steel cable snares as an alternative.
Pathway

Castor canadensis (beaver) was introduced to Finland as part of a programme to reintroduce the European beaver (C. fiber). (Nummi, 2006). They were introduced to Poland and farmed (Nummi, 2006). Castor canadensis (beaver) was introduced to southern South America during an Argentine government program to establish furbearers in Tierra del Fuego. Castor canadensis (beaver) was introduced to Finland as part of a programme to reintroduce the European beaver (C. fiber). (Nummi, 2006).

Compiler: Viki Aldridge, University of Washington, Tacoma, Supervised by Deborah Rudnick and IUCN/SSC Invasive Species Specialist Group (ISSG)

Review:

Publication date: 2009-12-13

ALIEN RANGE

[5] RUSSIAN FEDERATION

Red List assessed species 1: LC = 1;

Castor canadensis

BIBLIOGRAPHY

49 references found for Castor canadensis

A web site with information on the invaded range of the European beaver. Biologia 64 (1): 93-100.

This article gives information about the impacts beavers are having on the southern beech forests of Tierra del Fuego. Silva Fennica 39: 267-273.

This article discusses the impacts of the North American beaver in Finland. Science 300: 75-93.

The Oregonian

Summary: A detailed report of the effects of beavers (Castor canadensis) population situation on Tierra del Fuego ecosystem. Interciencia 29(7): 352-356.

Summary: The effects of beavers (Castor canadensis) on the nutrient dynamics of the Southern Beech forest of Tierra del Fuego. Applied Vegetation Science 97 (3): 115-120.

Summary: This study analyses the genetic diversity of invasive populations of beavers in Tierra del Fuego (Argentina). Biological Invasions 10: 673-683.

Summary: This article discusses the impacts of the North American beaver in Patagonia, Argentina. Ecología Austral 16 (3): 195-209.

Summary: This study examines the genetic diversity of invasive populations of beavers in Tierra del Fuego, Argentina. Biological Invasions 9 (7): 679-699.

Summary: This is a keystone species.

Summary: This article discusses the impacts of the North American beaver in Patagonia, Argentina. Ecología Austral 16 (3): 195-209.

Summary: This study examines the genetic diversity of invasive populations of beavers in Tierra del Fuego, Argentina. Biological Invasions 9 (7): 679-699.

Summary: This study examines the genetic diversity of invasive populations of beavers in Tierra del Fuego, Argentina. Biological Invasions 9 (7): 679-699.

