Dreissena bugensis

System: Freshwater

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Mollusca</td>
<td>Bivalvia</td>
<td>Veneroida</td>
<td>Dreissenidae</td>
</tr>
</tbody>
</table>

Common name
quagga mussel (English)

Synonym

Similar species
Dreissena polymorpha, Corbicula fluminea, Dreissena rostriformis

Summary
Dreissena bugensis is native to parts of Ukraine. This small freshwater mussel is an active filter feeder, which competes for food resources with filter-feeding zooplankton by accelerating sedimentation of suspended matter, including organic substances. It is also a nuisance and economic problem when it grows on recreational or commercial ships/boats, potable water treatment plants and electric power stations.

Species Description
Dreissena bugensis commonly has alternating light and dark brown stripes, but can also be solid light brown or dark brown. It has two smooth shells that are shaped like the letter “D”. These mussels are usually less than 2 inches in length. In new populations, most mussels are young and therefore very small (under ¼ -inch long) (California Department of Fish and Game 2008). There are two phenotypes of *D. bugensis* that have been reported in the Great Lakes: the "epilimnetic" form, which has a high flat shell, and the "profunda" form, which has an elongate modioliform shell and has invaded soft sediments in the hypolimnion. The epilimnetic form uses its byssal threads to attach to objects and particles and form druses or colonies. The profunda morph can form colonies and attach to objects with its byssal threads or it can partially bury itself in soft sediments and extend its very long incumbent siphon above itself to bring in suspended food particles (Vanderploeg et al. 2002).

Notes
In both North America and its original range in Europe, *D. bugensis* is replacing zebra mussel (*D. polymorpha*) populations (Domske & Oneill 2003; Diggins et al. 2004). Some industries build intake structures at depths too low for *D. polymorpha* to grow in; however, *D. bugensis* is able to colonise surfaces at greater depths, rendering these new structures vulnerable to mussel colonisation (Mills et al., 1999; and Richerson and Maynard, 2004).
Lifecycle Stages
After fertilisation veligers (pelagic microscopic larvae) develop within a few days and soon acquire minute bivalve shells. Free-swimming veligers drift with the currents for three to four weeks, feeding using their hair-like cilia while trying to locate suitable substrata to settle and secure byssal threads. Mortality in this transitional stage from planktonic veliger to settled juveniles may exceed 99% (Stanczykowska 1977, in Bially & MacIsaac 2000). Macrophytes, mussel colonies and pebbles were found to be more suitable substrates for settling than gravel, sand or mud (Lewandowski 1982, in Bially & MacIsaac 2000).

Uses
Because they are long-lived and sessile, quagga mussels can be used as bioindicators of hazardous substances such as radionuclides (Lubianov 1972, in Orlova 2009).

Habitat Description
Adult *D. bugensis* attach to natural hard substrata including rocks, wood, and macrophytic plants and to man-made materials including concrete, metal piping, steel, nylon, fiberglass and wood. Mussels attach to substrates via proteinaceous byssal threads produced from a gland posterior to the foot. *D. bugensis* typically occur in fresh water but thrive in salinities up to 1‰ and can reproduce in salinities below 3‰. Salinities exceeding 6‰ cause mortality (Ussery & McMahon 1995; Wright *et al.* 1996).

Reproduction
D. bugensis is a prolific breeder. It is dioecious and exhibits external fertilisation. A fully mature female mussel is capable of producing up to one million eggs per season (Richerson 2002; D’Itri 1996).

Nutrition
D. bugensis are filter feeders which use cilia to pull water into their shell cavity from where it passes through an incumbent siphon. Desirable particulate matter is removed in the siphon. Each adult mussel is capable of filtering one or more liters of water each day, removing phytoplankton, zooplankton, algae and even their own veligers (larvae) (Snyder *et al.* 1997). Any undesirable particulate matter is bound with mucus, known as pseudofeces, and ejected out the incumbent siphon. The particle-free water is then discharged out the excurrent siphon (Richerson 2002, D’Itri 1996, Nalepa & Schloesser 1993).
General Impacts

Nutrient loading and species introductions are thought to be two of the major environmental problems currently facing freshwater ecosystems (Richter et al. 1997, Hall et al. 2003 in Haynes et al. 2005), and both of these anthropogenic factors are of concern in the Great Lakes, USA (Haynes et al. 2005).

Reduction in Native Biodiversity: *D. bugensis* causes changes in the structural characteristics of zooplankton including total abundance, biomass and species composition. Specifically, there is an inverse relationship between zooplankton abundance/biomass and density of *Dreissena* mussels (Grigorovich & Shevtsova, 1995). *Dreissena* infestations have caused upwards of 95% reduction in unionid numbers and extirpated eight species of unionids in some areas of the Great Lakes (Schloesser et al. 1998; Schloesser & Masteller 1999). Individuals attach themselves to the shells of other mussels, forming encrusting mats many shells thick (10-30mm).

Modification of Natural Benthic Communities: *Dreissena* negatively affects benthic invertebrate communities, especially filter-feeding or deep-dwelling invertebrates that rely on detrital rain (Dermott and Munawar 1993, Strayer et al. 1998, Johannsson et al. 2000, in Haynes et al. 2005). Predicting benthic invertebrate community response to a change in nutrient levels is very difficult, and the potential synergistic effects of nutrient alterations and exotics such as *Dreissena* are complex (Haynes et al. 2005).

Economic: Thick encrustations of mussels form on man-made structures or within raw water systems, impacting on operation and efficiency. *D. bugensis* can have major detrimental impacts on recreational and commercial shipping/boating as well as on water-using industries, potable water treatment plants and electric power stations (Ussery & McMahon, 1995).
Management Info

Compared to the zebra mussel (*Dreissena polymorpha*) there has been little research carried out on the biology, ecological requirements and tolerances of quagga mussels (*Dreissena bugensis* (Mackie & Claudi, 2009). Indeed most research on the control of mussels has focused on *D. polymorpha* (McEnnulty et al., 2001). However it is thought that most of the control methods would also apply to quagga mussels (G.L. Mackie, pers. comm.; Virginia Department of Game and Inland Fisheries, 2005).

Prevention: Studies suggest that humans are responsible for most introductions of zebra and quagga mussels into new areas. The best way to prevent and manage dreissenid invasions in open waters is thought to be prevention through public outreach and education. Examples of this include public signage and wash stations at boat launches and other potential introduction points (Frischer et al. 2005).

Detection: One of the most important criterions for successful eradication of a species is early detection allowing control measures to take place while the incursion is still relatively small. Detection relies on monitoring and education. In Lake George, NY zebra mussels were detected in 1999 while the population was relatively small. Control efforts between 1999 and 2007, mainly using physical means and SCUBA, were successful in eradicating zebra mussels from the lake (Wimbush et al. 2009).

Chemical Control: Chlorination is one of the most common methods for control or eradication. Chlorination is often used; *D. bugensis* is more sensitive to chlorination than *D. polymorpha*. Thus chlorination programs currently in use to combat *D. polymorpha* are more than sufficient to simultaneously control *D. bugensis*. Another alternative has been potassium permanganate, especially for drinking water sources, even though chemical controls are not environmentally sound solutions. *D. polymorpha* was recently eradicated from Millbrook Quarry, Virginia using 174,000 gallons of potassium chloride solution over a 3 week period in 2006 (Virginia Department of Game and Inland Fisheries, 2005). Other chemical control options include chlorine dioxide, sodium hypochlorite, ozone, molluscicides and polymers (D'Itri, 1996).

Physical: Decreasing water levels of water bodies to cause desiccation of *D. bugensis* is an effective, readily applied and environmentally neutral technique. It would be most effective in raw water systems such as navigation locks and water intake structures, which are designed to be periodically dewatered for maintenance. This is a particularly attractive method of control because it could be utilized to mitigate fouling not just by *D. bugensis* but also mixed populations of this species and *D. polymorpha* (Brady et al., 1996; Ussery & McMahon, 1995). Other physical methods include manual scraping, high-pressure jetting, antifouling coatings and mechanical filtration.

Biological Control: Research is currently underway to test the effectiveness of the CL145A strain of the bacteria *Pseudomonas fluorescens* which produces a toxin that destroys the digestive system of *Dreissena* spp. (Molloy & Mayer 2007).

Other: A variety of other control methods in use or being developed are oxygen deprivation, thermal treatment, radiation, molluscicides, ozone, antifouling coatings, electric currents, and sonic vibration (D'Itri, 1996; Mackie & Claudi, 2009). Fears and Mackie (1995) investigated the use of low-voltage currents for preventing settlement and attachment by *D. bugensis* by using steel rods and plates with the current running through them placed near the intake of a pulp and paper plant. Complete prevention of settlement was achieved at 8 volts/in with steel rods on both wood and concrete surfaces (Fears & Mackie, 1995).
Pathway
A study conducted by Ricciardi and colleagues (1995) revealed that under temperate summer conditions adult *D. bugensis* may survive on overland transport (e.g. small trailer-boats) for up to 5 days. Veligers can be transported in fish and bait wells as well as in cooling ports of inboard and outboard motors. Most or all the introductions of quagga mussels beyond the 100th Meridian in North America are purported to be via trailered boats (Mackie & Claudi 2009). Its release into Great Lakes waters is linked to discharge of ship ballast water (Mills *et al.*, 1999).

Principal source: Ussery and McMahon, 1995 Comparative study of the desiccation resistance of zebra mussels (*Dreissena polymorpha*) and quagga mussels (*Dreissena bugensis*) Richerson, 2002. *\nIn*DREISSENA* Species FAQs, A closer look

Compiler: IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Gerald L. Mackie, Professor, Department of Zoology, University of Guelph, Guelph, Ontario Canada

Publication date: 2010-10-27

ALIEN RANGE

[1] ATLANTIC - NORTHEAST
[1] CASPIAN SEA
[1] GREAT LAKES
[1] LAKE HURON
[1] LAKE ONTARIO
[1] LAKE SUPERIOR
[1] NETHERLANDS
[2] RUSSIAN FEDERATION
[5] UKRAINE

[3] CANADA
[1] GERMANY
[1] LAKE ERIE
[1] LAKE MICHIGAN
[1] LAKE ST. CLAIR
[1] MEDITERRANEAN & BLACK SEA
[2] ROMANIA
[1] ST. LAWRENCE RIVER
[19] UNITED STATES

BIBLIOGRAPHY

260 references found for *Dreissena bugensis*

Management information

Benson, A. J. and D. Raikow. 2009. *Dreissena polymorpha*. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. Revision Date: 10/31/2008

Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance.

Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISk- Marine invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Vilizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:
[Accessed 13 October 2011]
The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf
[Accessed 13 January 2009].

Summary: Effect of zebra mussels on refrigeration structures and the methods used to control their numbers. http://www.marine.csiro.au/crimp/nimpis/controlDetail.asp?ID=84 [Accessed 13 December 2007]

Summary: Report into the success of using a pulse power method for controlling zebra mussel numbers.

GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: *Dreissena bugensis*

Summary: Research into the optimum pressure pulse needed to most effectively control zebra mussels.

Summary: Report into using chlorine dioxide as a treatment for ballast water to prevent the spread of marine invasive species.

Smythe, A. Garry and Lange, R. F. 1995. Comparative study of the desiccation resistance of zebra mussels (*Dreissena polymorpha*) and quagga mussels (*Dreissena bugensis*), Technical Report EL-95-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

General information

Bowers, Richard and De Szalay, Ferenc A. 2007. Fish predation of Zebra mussels attached to Quadrula quadula (Bivalvia: Unionidae) and benthic mussels in a Great lake coastal wetland. WETLANDS, Vol. 27, No. 1, March 2007, pp. 203?208

Summary: English:
The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page (http://www.conabio.gob.mx/invasoras/index.php/Portada), under the section Novedades for information on updates. Invasive species - Moluscos is available from: http://www.conabio.gob.mx/invasoras/index.php/Species_invasoras_-_Moluscos[Accessed 30 July 2008]

Spanish:
La lista de especies del Sistema de informaci?n sobre especies invasoras de m?xico cuenta actualmente con informaci?n acerca de nombre cient?fico, familia, grupo y nombre com?n, as? como h?bitat, estado de la invasi?n en M?xico, rutas de introducci?n y ligas a otros s?los especializados. Algunas de las especies de mayor riesgo ya tienen una liga directa a la p?gina de alertas. Es importante resaltar que estas listas se encuentran en constante proceso de actualizaci?n, por favor consulte la portada (http://www.conabio.gob.mx/invasoras/index.php/Portada), en la secci?n novedades, para conocer los cambios.

Delivering Alien Invasive Species Inventories for Europe (DAISIE). 2006. Dreissena bugensis

Summary: Impacts of some invasive species on native species within the Great Lakes.

Summary: Available from:

Dreissenid mussels (Dreissena polymorpha and Dreissena bugensis) are important indicators of ecological integrity of lakes and streams in North American due to their significant effects on waterfowl, aquatic plants, and zooplankton. These mussels are native to Europe and were first found in North America in 1980. They can consume up to 10% of their weight in phytoplankton per day, which can lead to significant changes in the aquatic ecosystem.

Summary: Zebra mussels have affected the food webs existing in this habitat.

Maguire, M Catriona and Jonathan Grey., 2006. Determination of zooplankton dietary shift following a zebra mussel invasion, as indicated by stable isotope analysis. Freshwater Biology Volume 51 Page 1310 - July 2006

Summary: Effects of zebra mussel mats on the foraging success of juvenile lake sturgeon.

Summary: Paper discussing the effects of zebra mussel abundance increase.

Owens, Randall W. and Dittman, Dawn E. 2003. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia. Aquatic Ecosystem Health & Management. 6(3). September 2003. 311-323.

Summary: Report into research being conducted in Spain aimed at a control method for zebra mussels.

Summary: Report into the effects of invasive species invasions in Lake Erie.

Sures, Bernd, Steiner, Werner, Rydlo, Manfred, Taraschewski, Horst. 1999. Concentrations of 17 elements in the zebra mussel (Dreissena polymorpha), in different tissues of perch (Perca fluviatilis), and in perch intestinal parasites (Acanthocephalus lucii) from the subalpine lake Mondsee, Austria. Environmental Toxicology & Chemistry. 18(11). Nov., 1999. 2574-2579.

Winkler, Gesche, Sirois, Pascal, Johnson, Ladd E., Dodson, Julian J. 2005. Invasion of an estuarine transition zone by Dreissena polymorpha veligers had no detectable effect on zooplankton community structure. Canadian Journal of Fisheries & Aquatic Sciences, 62(3). MAR 05. 578-592.

Wong, Wai Hing, Levinton, Jeffery S., 2005. Consumption rates of two rotifer species by zebra mussels (Dreissena polymorpha) by common carp (Cyprinus carpio) and quagga (Dreissena bugensis) mussels. Estuaries 28(3):619-628.

