Herpestes javanicus

Common name
newla (Hindi, India), small Indian mongoose (English), Kleiner Mungo (German), mangouste (French), mangus (Hindi), mweyba (Burmese), beji (Bengali)

Synonym

Similar species

Summary
The small Indian mongoose (*Herpestes auropunctatus*) has been introduced to many islands worldwide for control of rats and snakes, mainly in tropical areas, but also to islands in the Adriatic Sea. Moreover, it has been introduced successfully in two continental areas: the northeast coast of South America and a Croatian peninsula. Mongooses are diurnal generalist carnivores that thrive in human-altered habitats. Predation by mongoose has had severe impacts on native biodiversity leading to the decline and extirpation of native mammals, birds, reptiles, and amphibians. At least seven species of native vertebrates, including mammals, birds, reptiles, and amphibians, have almost disappeared on Amami-oshima Island since the introduction of the mongoose in 1979. In addition, mongoose carries human and animal diseases, including rabies and human Leptospira bacterium.

Species Description
The small Indian mongoose has a slender body with short legs. The head is elongated with a pointed muzzle. The tail is robustly muscular at the base and tapers gradually throughout its length. Length of head and body is 509 to 671mm. Ears are short and project only slightly beyond the fur. Feet have five toes with long sharp non-retractile claws. Hair is short. Both sexes have an extensible anal pad with ducted glands lateral to the anus. Fur is soft, pale to dark brown flecked with golden spots. Underside is paler than rest of body. Eyes are amber/brown but are blue green in young animals. There is distinct sexual dimorphism. Females range in length from 509 to 578mm with a mean of 540mm. Body mass at sexual maturity ranges from 305 to 662 g with a mean of 434g. Males have a wider head and more robust body ranging in length from 544 to 671mm with a mean of 591mm (Nellis, 1989).
Notes
"The genus *Herpestes* contains 10 species (Nowak 1999) and is considered the oldest genus within the order Carnivora, dating back approximately 30 million years (Hinton & Dunn 1967). The native distribution of the small Indian mongoose [*Herpestes auropunctatus* (Hodgson 1836)] stretches from Iraq in the west to Myanmar in the east, and from northern Pakistan southwards throughout the Indian subcontinent. East of Myanmar (near the Salween River), the small Indian mongoose is replaced by the Javan mongoose, *Herpestes javanicus* (E. Geoffroy Saint-Hilaire, 1818), which recently has been recognized as a separate species (G. Veron, personal communication). The small Indian mongoose (but not the Javan mongoose) has been introduced to many islands worldwide for control of rats and snakes, mainly in tropical areas, but also to islands in the Adriatic Sea. Moreover, it has been introduced successfully in two continental areas: the northeast coast of South America (Husson 1960) and a Croatian peninsula (Tvrtkovic & Krystufek 1990; Krystufek & Tvrtkovic 1992). Almost all introduced populations arose from very small numbers of founding individuals, and the introduction history is often well documented" (from Thulin et al 2006)

Lifecycle Stages
Gestation 42-50 days, weaning 5 weeks, sexual maturity 10 months, total life expectancy in wild animals 3-4 years.

Uses
The small Indian mongoose was introduced as a biocontrol agent to control rats in cane fields but not particularly effective and the enormous cost to native species far outweighed any benefit.

Habitat Description
The small Indian mongoose is reported to prefer dry habitats and this is supported by the observation that trap success falls to zero in rainy weather in most cases. Habitat preferences in the native range have not been investigated but it seems the species prefers grassland and secondary growth to dense forest. Mongooses are also found around human habitation. Studies on Caribbean islands have shown a clear preference for dry natural areas are preferred over rainy areas. Mongooses reach dense population on Hawai‘i and in this case they begin to exploit wet areas (Hays and Conant, 2007). In Mauritius tended to be found in rocky areas, riparian habitats and mature forest over scrub, long grass (sugar cane plantations), short grass and paths (Roy et al. 2002). In Puerto Rico male mongooses from the rain forest areas were larger than those in dry forests (Vilella, 1998).

Reproduction
Placental, sexual. Breeds two or three times a year, no real season, though there are breeding peaks.
Two litters of three youngs per female per year. Females can breed from the age of 10 months.
Nutrition
Small Indian mongoose are generalist carnivores that thrive in human-altered habitats. Diet has not been investigated in the native range but a large number of studies have investigated diet in areas where the species has been introduced. Small Indian mongoose diet normally consists of mammals, birds, herpetofauna, invertebrates and plant material. Proportions of these dietary items vary according to availability and location of the study. Some populations are largely insectivorous; others may eat a diet largely consisting of fruit for part of the year (Hays and Conant, 2007). This high level of dietary flexibility has contributed to the small Indian mongoose’s success as an invasive species.

General Impacts
The small Indian mongoose has had a major impact on native species in the areas where it has been introduced. In most cases the native wildlife in these areas evolved in the absence of predatory mammals so they are particularly threatened by mongoose predation. Species considered to have been driven extinct through mongoose predation are the barred-wing rail (see *Nesoclopeus poecilopterus* in IUCN Red List of Threatened Species) in Fiji (Hays and Conant, 2007). The Critically Endangered (CR)’ and ‘Possibly Extinct’ Jamaica petrel (see *Pterodroma caribbaea* in IUCN Red List of Threatened Species) suffered drastic decline in numbers in the 19th century presumably due to predation by mongoose (capable of taking incubating adults) and rats (BirdLife International 2004). Mongooses have also been implicated in the decline of many other bird, reptile and mammal species. Mongooses also eat invertebrates but the impact of this predation on invertebrate populations has not been studied.

In the Caribbean, mongooses prey on the ‘Critically Endangered (CR)’ hawksbill turtle (see *Eretmochelys imbricata* in IUCN Red List of Threatened Species) eggs in fragmented beach habitat (Leighton et al. 2008, 2009, 2010, 2011). Trapping around vulnerable beaches led to much greater breeding success for the turtles (Coblentz and Coblentz, 1985). Mongooses on Mauritius have been blamed for the extirpation of introduced game birds and the decline of endemic species such as the ‘Endangered (EN)’ pink pigeon (see *Nesoenas mayeri* in IUCN Red List of Threatened Species) (Roy et al. 2002). At least seven species of native vertebrates, including mammals, birds, reptiles, and amphibians, have almost disappeared on Amami-oshima Island since the introduction of the mongoose in 1979. The mongoose has been shown to have a strong negative effect on the ‘Endangered (EN)’ Amami rabbit (see *Pentalagus furnessi* in IUCN Red List of Threatened Species) (Watari et al. 2008).

In addition, mongoose are carriers of human and animal diseases, including rabies and human *Leptospira* bacterium.
Management Info

Physical: Trapping is commonly used to remove small Indian mongooses from sensitive areas. It is often very successful at removing animals in the short term. Unfortunately, trapping programmes need to be run almost constantly as mongooses re-colonise trapped areas very quickly (Roy et al. 2003; Hays and Conant, 2007). Fencing has been proposed as a possible control method in Mauritius but predator proof fences are expensive and inflexible should the area that needs to be protected change (Roy et al. 2002).

Chemical: Diphacinone anticoagulant poison has been used to control mongooses in Hawai’i (Hays et al. 2007). The use of this toxin has been considered in Mauritius but poisoning methods would have to be adapted to prevent poisoning of non-target species (Roy et al. 2002).

Integrated management: There is concern in Mauritius that removing mongooses without also removing cats and rats will be disastrous for native species because it may lead to increased rat and cat populations (Roy et al. 2002).

Pathway

Introduced for biological control of rats and snakes in agricultural habitats, from which the animals spread throughout local areas within decades.

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review: Dr. Sugoto Roy (Coordinator); Hebridean Mink Project. Central Science Laboratory Sand Hutton, York UK

Publication date: 2011-05-25

ALIEN RANGE

[1] ANTIGUA AND BARBUDA
[1] BERMUDA
[1] COMOROS
[1] CROATIA
[1] DOMINICAN REPUBLIC
[1] FRENCH GUIANA
[2] GUADELOUPE
[1] HAITI
[1] INDONESIA
[2] JAPAN
[1] MAURITIUS
[1] PUERTO RICO
[1] SAINT LUCIA
[1] SAINT VINCENT AND THE GRENADINES
[1] TRINIDAD AND TOBAGO
[1] BAHAMAS
[1] COLOMBIA
[1] COSTA RICA
[1] CUBA
[2] FIJI
[1] GRENADA
[1] GUYANA
[1] HONDURAS
[1] JAMAICA
[1] MARTINIQUE
[1] PANAMA
[1] SAINT KITTS AND NEVIS
[1] SAINT MARTIN (FRENCH PART)
[1] SURINAME
[1] UNITED STATES
FULL ACCOUNT FOR: *Herpestes javanicus*

BIBLIOGRAPHY

129 references found for *Herpestes javanicus*

Management information

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be ?significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors? experience with that of other workers.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Kusuda, Satoshi; Hoson, Osamu; Nakaya, Yumiko; Ogura, Go; Oshio, Seikou; Takara, Junji; Matsuda, Ayano; Doi, Osamu; Nagamine, Takashi; Murata, Koichi, 2010. Induced estrus in female small Asian mongooses (Herpestes javanicus) for the purpose of controlling invasive alien species in Okinawa Island Mammal Study. 35(3). SEP 2010. 217-219.

Summary: French language. Information about impacts, eradication methodology, results and discussion in French.

Summary: Available from:

Pitt, W.C. and Sugihara, R.T. 2009. Spatial (foraging distance) and temporal (time and frequency of visitation) responses of marked small Indian mongooses (Herpestes auropunctatus) to selected food baits in Hawaii. USDA, APHIS, WS, NWRC. Hilo, HI, 81 pp.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Herpestes javanicus

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

General information

Summary: Available from: http://www.iucnredlist.org/apps/redlist/details/144861/0 [Accessed 12 March 2010]

Summary: Comprehensive review of worldwide effects of the small Indian mongoose in it's introduced range

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: *Herpestes javanicus*

Summary: Inventory and status of the natural and cultural resource base, including the impact of invasive species on Grenada.

ITIS (Integrated Taxonomic Information System). 2005. Online Database *Herpestes javanicus*

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Summary: Bilan des introductions des mammif?res terrestres dans les Antilles fran?aises et de leurs impacts.

Summary: Article de synth?se sur les mammif?res terrestres et c?tas des Antilles fran?aises (hors Chirot?res et C?). L’origine des esp?ces introduites et leurs impacts avr?nt ou potentiels sont discut?s.

Veron, Geraldine; Patou, Marie-Lilith; Pothet, Geraldine; Simberloff, Daniel; Jennings, Andrew P., 2007. Systematic status and biogeography of the Javan and small Indian mongooses (Herpestidae, Carnivora) Zoologica Scripta. 36(1). JAN 2007. 1-10.

