Cenchrus ciliaris

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophyta</td>
<td>Liliopsida</td>
<td>Cyperales</td>
<td>Poaceae</td>
</tr>
</tbody>
</table>

Common name: African foxtail grass (English), zacate buffel (Spanish), buffelgrass (English), pasto buffel (Spanish), B?ffelgras (German), cenchrus cili? (French), dhaman (Hindi)

Synonym: Cenchrus ciliaris, L.
Cenchrus glaucus, C. R. Mudaliar & Sundararaj
Pennisetum cenchroides, Rich.
Pennisetum incomptum, Nees ex Steud.

Similar species: Cenchrus ciliaris (Pennisetum ciliare), commonly known as buffel grass, is a perennial bunchgrass that forms thick mats. It is also known by its basionym Cenchrus ciliaris. Buffel grass has been widely introduced in the dry tropics and subtropics as a pasture grass, for erosion control and revegetation of arid areas. The characteristics of buffel grass which make it suitable for erosion control are rapid germination, high propagation and establishment rates on poor and infertile soils. Buffel grass's dominance and resistance to fire, drought and heavy grazing on arid soils make it a suitable arid zone pasture grass. In Australia, the south-western United States and Mexico (where it has been introduced as a pasture grass and for erosion control) Buffel grass often forms extensive dense monocultures excluding native species and promoting intense and frequent fires. It is widely distributed and is resilient to a number of harsh environmental conditions. It changes plant communities by encouraging and carrying wildfires through communities that are not adapted to fire. It burns readily and recovers quickly after fire. Buffel grass has a robust root system; its swollen stem base accumulates carbohydrate reserves, so the loss of leaf surface area after a fire or drought is not fatal to the plant and allows regrowth in favourable conditions.

view this species on IUCN Red List
Species Description
Buffel grass is a perennial bunchgrass with erect culms 10-150cm tall. It can form thick mats or tussocks with dense, usually stoloniferous root systems. The leaf blades are bluish-green in colour, 3-30cm long, with soft hairs on the upper surface. The inflorescence is generally cylindrical in outline, 2-14cm long, and can be purple, gray or yellowish. The spikelets are solitary or clustered, and are surrounded by numerous bristles (Martin, 2002).

Notes
Cenchrus ciliaris is also referred to as Pennisetum ciliare.

Uses
Buffel grass has been widely introduced and subsequently established in hot, semiarid regions of the world for forage and fodder (Van Devender et al. 1997).

Habitat Description
Buffel grass favours alkaline soils and within arid areas establishes best in pockets of high nutrients and moisture. Hacker and Ratcliff (1989) state that buffel grass does not spread rapidly in higher rainfall areas in Queensland, Australia, but is more invasive in the arid zones of central and western Australia where its resistance to fire drought and grazing makes it very persistant and dominate over native species by forming dense monocultures and displacing native species.

Reproduction
Tu (2002) states that, "P. ciliare (Cenchrus ciliaris) is bisexual (having both male and female flowers), with bisexual spikelets and hermaphrodite florets. C. ciliaris can produce seed either sexually or by apomixis (asexual reproduction without fertilization or meiosis) (Van Devender et al. 1997 in Tu, 2002). It can also reproduce vegetatively, via rhizome or stolon sprouts." Ocumpaugh and Rodriguez (UNDATED) elaborate on the apomixis method of reproduction stating that, "All P. ciliare (Cenchrus ciliaris) varieties reproduce by apomixis, where the embryo of the seed develops from an unreduced vegetative (somatic) cell in the ovule of the female and receives no genetic material from the male (Bashaw and Hanna 1990), resulting in plants that are identical to their maternal origin, or in other words, varietal clones. The apomixis trait is both an asset and a liability. It is an asset in that once we find a plant with good agronomic characteristics we can save the seed from it and it always breeds true, producing a very uniform variety. The liability is that the crossing of plants with good traits is not a one-step process since the use of the sexual clone is indispensable."
General Impacts
Buffel grass alters fire regimes. Buffel grass changes plant communities by encouraging and carrying wildfires through communities that are not adapted to fire. It burns readily (even when green) and recovers quickly after fire. Recurrent fires maintain C. ciliaris populations, and the ecological result is a conversion of native desert scrub communities to an African-type savannah with reduced native biological diversity (McCormick et al. 1999). Brooks et al. (2004) identify methods by which new plant forms introduced to an existing vegetation stand through invasion can alter the extrinsic fuel properties of the stand. The authors observe that buffel grass in Australia alters the fire regime by increasing horizontal fuel continuity and thus increase in frequency and extent of the fire.

Martin (2002) states that, "P. ciliare (Cenchrus ciliaris), in Hawaii, was planted for erosion control but is now replacing the native pili grass (Heteropogon contortus). The species biodiversity in alien-dominated communities is lower than the biodiversity in native pili grass communities (Daehler and Carino, 1998). C. ciliaris was also noted as one of the threats for the federally endangered species South Texas ambrosia (see Ambrosia cheiranthifolia in Endangered Species found in Texas) and Zapata bladderpod (see Lesquerella thamnophila in Federal Register Environmental Documents).

In upland arid regions, C. ciliaris can transform native desert shrub and thornscrub into grasslands. In lowland riparian areas, C. ciliaris can replace native riparian vegetation along riverbanks. By dominating these riparian areas and their moist refuges within arid regions, C. ciliaris threatens keystone habitats that are vital to the survival of many plant and animal species (McCormick et al. 1999).

Grice (2004) states that, "P. ciliare (Cenchrus ciliaris) is structurally and functionally similar to the native, perennial, tussock grasses of central Australia, but it might be less useful to native granivores than the native grasses because of the characteristics of its seeds. Invasion by C. ciliaris could therefore lead to a decline in the diversity of granivores."
Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Expert review underway

Publication date: 2006-03-23

ALIEN RANGE

[1] PUERTO RICO [10] UNITED STATES
[1] VIRGIN ISLANDS, U.S.

Red List assessed species 3: CR = 1; EN = 1; VU = 1;
Amytornis dorotheae VU Chamaesyce kuwaleana EN
Lasiorhinus kreffti CR

BIBLIOGRAPHY

25 references found for Cenchrus ciliaris

Management information
Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Tu, M. 2002. Element Stewardship Abstract for Cenchrus ciliaris L. The Nature Conservancy s Wildland Invasive Species Team, Dept. of Vegetable Crops & Weed Sciences, University of California, Davis, CA.

General information

Summary: English:
The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page (http://www.conabio.gob.mx/invasoras/index.php/Portada), under the section Novedades for information on updates.

Spanish:
La lista de especies del Sistema de informaci?n sobre especies invasoras en M?xico cuenta actualmente con informaci?n acerca de nombre cient?fico, familia, grupo y nombre com?n, as? como h?bitat, estado de la invasi?n en M?xico, rutas de introducci?n y ligas a otros sitios especializados. Algunas de las especies de mayor riesgo ya tienen una liga directa al p?gina de alertas. Es importante resaltar que estas listas se encuentran en constante proceso de actualizaci?n, por favor consulte la portada (http://www.conabio.gob.mx/invasoras/index.php/Portada), en la secci?n novedades, para conocer los cambios.

Especies invasoras - Plantas is available from:

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Smith, Clifford W., Undated. Impact of Alien Plants on Hawai‘i’s Native Biota.
Summary: This report emphasizes 86 of the more than 4,600 alien plant species that have been introduced to Hawai‘i. Issues related to the biology and control of these species are discussed.
Summary: Information on common names, synonyms, and the distributional range of species.