Vulpes vulpes

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Mammalia</td>
<td>Carnivora</td>
<td>Canidae</td>
</tr>
</tbody>
</table>

Common name
- vos (Dutch), red fox (English), rev (Norwegian), Rotfuchs (German), lis (Polish), raposa (Portuguese), fuchs (German), renard (French), zorro (Spanish), silver, black or cross fox (English), lape (Lithuanian), volpe (Italian)

Synonym
- Canis vulpes , (Linnaeus 1758)

Similar species
- Vulpes vulpes

Summary
The European red fox is probably responsible for declines of some small canids and ground-nesting birds in North America, and numerous small- and medium-sized rodents and marsupials in Australia. A programme to reduce predation pressure on native fauna within the critical weight range of 35 g to 5.5 kg in Western Australia has involved the use of 1080 fox baits.

Notes
There is a close relationship between fox and rabbit numbers (Saunders *et al.* 2007). When rabbit populations crash, due to drought, myxomatosis or Rabbit Calicivirus Disease (RCD), there will be a lag period until fox numbers decline and adjust to the reduced prey population. The likelihood of increased predation pressure on native wildlife over this period needs to be considered. Rabbit numbers may also be affected by foxes. Preliminary studies suggest that foxes and feral cats may slow the recovery of rabbit populations after they crash due to drought or disease. The potential role of foxes in rabbit control and the impact of foxes on native wildlife following crashes in rabbit populations needs to be clarified (Saunders *et al.* 2007).
Lifecycle Stages
Parturition occurs after a gestation of 51 to 53 days. Lactation lasts for approximately five weeks and weaning occurs gradually. Females can breed before one year of age, however, in areas of high density most yearlings do not produce pups. V. vulpes can live up to 9 years in the wild, although few individuals live more than 6 years. In the northern hemisphere, dispersal usually occurs from September to January.

Uses
Wild-caught V. vulpes are used in sport hunting. Foxes are also raised in farms, where they generate millions of dollars a year worldwide; for example in the EU from 2001 to 2002 fur farms generated US $4 600 million (International Fur Trade Federation Undated). Most of the world’s farmed fur is produced in Europe, accounting for 63% of fox production (EU = 47%); Finland is the world’s largest producer and exporter of fox skin (International Fur Trade Federation Undated). Russia/the Baltic States and China account respectively for 11% and 27% of fox production (International Fur Trade Federation Undated).

Habitat Description
The worldwide distribution of the red fox, ranging from tundra to the desert as well as urban areas, suggests that it can survive in most sorts of environments (Saunders et al. 1995). The fox is probably most abundant in fragmented environments typically found in agricultural landscapes because these offer a wide variety of cover, food and den sites (Saunders et al. 1995). More uniform, open environments are less favoured as are heavily forested or mountainous areas. Foxes do not live entirely within closed canopy forests but can penetrate some distance into them in search of food (Jarman 1986, in Saunders et al. 1995). The red fox appears to be absent from areas with tropical climates, such as Asia, although the reasons for this are unclear. In Australia the fox can survive in habitats ranging from arid through to alpine as well as urban. The only limitations on distribution appear to be the presence of dingoes and the tropical climate of the northern parts of Australia (Saunders et al. 1995).

Reproduction
Females reproduce only once a year. Gestation lasts 51 to 53 days with most cubs born during August and September. In Australia females are reproductively active from July to October with a peak during August in southeastern Australia (McIntosh 1963a, Ryan 1976a, in Saunders et al. 1995). In temperate regions breeding occurs from December to April (later in more northern latitudes). Mean litter size is four up to a maximum of about ten (Saunders et al. 1995). Both sexes become sexually mature from ten months of age (Saunders et al. 1995). Although social groups of one male and several vixens do exist, most foxes are thought to have only one mate; males may also leave their normal territory temporarily in search of other mating opportunities (Saunders et al. 1995).
Nutrition
Foxes prey particularly on small to medium-sized, ground-dwelling and semi-arboreal mammals, ground-nesting birds and chelid tortoises (DEWHA 2008b). Terrestrial mammals in Australia at the greatest risk are those that weigh between 35 g and 5.5 kg (critical weight range species), including ground-nesting birds, many of which are endangered or vulnerable (DEWHA 2008a). Although predominantly carnivorous, the fox is an opportunistic predator and scavenger with no specialised food requirements (Saunders et al. 1995). Foxes are omnivorous, consuming fruit, vegetables, eggs and insects, especially when they are seasonally available. Diet studies conducted in Australia show rabbits, house mice and sheep taken as carrion to be the most common food items (Saunders et al. 1995).
General Impacts

Reduction in native biodiversity: The damage to Australian wildlife since European settlement has been catastrophic (e.g. Salo et al. 2007). At least 20 species of Australian mammals have become extinct (Saunders et al. 1995). This represents about one half of the world's mammal extinctions in the last 200 years; a further 43 species are judged to be either endangered or vulnerable (Commonwealth Endangered Species Advisory Committee Report 1992, in Saunders et al. 1995). The causes are complex and the impact of foxes on wildlife have probably been exacerbated by habitat modification and fragmentation (Saunders et al. 1995).

In Australia the fox has eliminated remnant populations of some native rodent and marsupial species. The best known Australian example of impact on a native species as reported by Saunders and colleagues (1995) is that of the 'Near Threatened (NT)' black-footed rock-wallaby (Petrogale lateralis), living in small, relict colonies in the wheatbelt of Western Australia. Management of local fox populations using poisoned baits resulted in a substantial increase in wallaby numbers. Another threatening process which has recently come to light is the impact of predation by foxes on native marsupials and on the 'Vulnerable (VU)' malleefowl (Leipoa ocellata) (Saunders et al. 1995). For more examples of Australian fox removal studies please see Saunders et al. 1995.

In North America, introduced foxes have negative impacts on many ground-nesting birds, such as ducks and grouse. In California, European red foxes have to be controlled on an annual basis to protect the nesting grounds of several endangered species of birds. European red foxes also negatively impact smaller native canids, such as the endangered San Joaquin kit foxes and subspecies of native red foxes.

Competition: The impact of competition by foxes appears to be secondary to that of predation. Morris (1992) suggests foxes may compete with the chuditch or western quoll (Dasyurus geoffroii) for food in jarrah forest in Western Australia. Foxes also prey on young chuditch.

Agricultural: European red foxes are also a threat to livestock as they prey on poultry, lambs and kids.

Disease Transmission: In its introduced range in Australia the fox carries no diseases of serious economic or public health significance, although recently foxes have been found to harbour the hydatid parasite (Saunders et al. 2007). Controversy still surrounds its possible role as a wild reservoir host for the rabies virus (Saunders et al. 2007). In many parts of the northern hemisphere, the fox is the main reservoir of this disease and, given the widespread distribution of foxes in Australia, the possibility of rabies developing as an established disease in fox populations cannot be dismissed (Saunders et al. 2007).

Many other infectious diseases occur in foxes, although little is known of their incidence in Australia, or their impact on population regulation. These include mange, canine distemper, parvovirus, toxoplasmosis, canine hepatitis, tularemia, leptospirosis, staphylococcal infections and encephalitis (Saunders et al. 1995). Like most carnivores that feed on a wide range of prey, foxes also carry a variety of endoparasites (Saunders et al. 1995). The incidence of helmith parasites, in foxes in particular, has been intensively surveyed in southeastern Australia because of their potential transmission to domestic animals (Saunders et al. 1995).
Management Info
An analysis by Salo and colleagues (2007) has confirmed that introduced predators generally have detrimental impacts on populations of native species. Impacts on prey are much greater in Australia than in other parts of the world. Since the early days of European settlement in Australia, control of predators has been attempted using a variety of methods, including shooting, trapping, fencing and poisoning (Rolls 1969, in Glen et al. 2007). Control of urban foxes also presents a problem, as conventional lethal techniques (e.g., shooting, poisoning and trapping) cannot be used in built up areas. Efforts are now directed towards mitigating the impact of the fox using baits to deliver vaccines or poisons or to regulate fertility (Armstrong 2004; Marks et al. 1996; Vos 2003). The ongoing costs of fox control are high. To aerially bait approximately 35 000 square kilometers/year costs approximately $1.3 million (Saunders & McLeod 2007, in DEWHA 2008b). Exclusion fencing costs up to $10 000/km (DEWHA 2008b).

Preventative Measures: Fox scats are surprisingly persistent in the field and sufficient DNA is contained within scats for 100% accuracy in species identification, even after three months of weathering. DNA-based species identification is robust, no matter what method is used to extract DNA (Berry et al. 2007). DNA extraction with the commercial kit was the most costly (about AU$6.0, Euro 3.6, US$4.4 per sample in consumables) and time-consuming aspect of scat processing (compared with less than AU$0.10 per sample for chelex). Use of a cheaper and more straightforward extraction protocol places fewer constraints on the number of scats that could be processed.

Physical: Exclusion fencing is used to protect areas of high conservation value (Algar & Smith 1998, in Robley et al. 2007). It has proven to be a valuable tool in aiding the re-introduction of species to areas from which they have been previously eliminated by feral animals such as foxes (Robley et al. 2007). Results from fencing trials by Robley and colleagues (2007) indicate that fences should be 1.8 m high, have an overhang that is at least 600 mm in circumference that is curved or shaped in such a way that prevents animals climbing over from underneath, and have an apron with a mesh hard enough to prevent foxes chewing through. Electric fencing is not required.

Chemical: In Australia the fox is most commonly managed by setting baits impregnated with 1080 (sodium fluoroacetate) poison (Gentle et al. 2007). Fox numbers are controlled by laying dried meat baits containing the poison 1080 (sodium monofluoroacetate) at least four times per year. The poison is a naturally occuring substance found in native plants called gastrolobiums or ‘poison peas’. While native animals have evolved with these plants and have a high tolerance to the poison, introduced animals do not. Baits consist either of fresh or dried meat, offal, chicken eggs or commercial mixtures (Saunders & McLeod 2007, in Glen et al. 2007). Baiting is the only method currently available for predator control that can be used successfully over broad areas (Gentle 2005, in Glen et al. 2007). However, the long-term effectiveness of such control campaigns is likely to be limited due to the ability of foxes to disperse over considerable distances and to swiftly recolonise areas (Gentle et al. 2007). In southeastern Australia, baiting for foxes by landholders is encouraged by state government agencies. However, for reasons including bait caching and bait degradation, current baiting practices may not always be efficient or effective (Gentle et al. 2007). Managers should adopt a approach which seeks to minimise potential risk to non-target individuals, while clarifying population-level effects through continued research (Glen et al. 2007).

Fertility regulators include cabergoline, a dopamine agonist that has previously been demonstrated to have an abortifacient effect in cats (Felis catus) and dogs (Canis familiaris) (see Marks et al. 1996). Marks and colleagues (1996) report that the chemical is palatable to foxes and easily incorporated into a non-poisonous bait. The incidence of cubs was significantly lower in treatment dens than in the controls.

Vos (2003) reports that as a result of oral vaccination of foxes rabies has almost been completely eradicated from Western and Central Europe.
Pathway
Introduced for sport hunting purposes in Australia and USA

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review: Jan F. Kamler, Wildlife Conservation Research Unit, Oxford University UK

Publication date: 2010-07-29

ALIEN RANGE
[1] NORTH AMERICA [49] UNITED STATES

Red List assessed species 125: EX = 6; CR = 22; EN = 30; VU = 20; NT = 24; DD = 3; LC = 20;

- Acanthophis rugosus LC
- Antechinomys laniger LC
- Bettongia gaimardi NT
- Bettongia penicillata CR
- Burramys parvus CR
- Caretta caretta EN
- Chlamydotis undulata VU
- Dasyornis broadbenti LC
- Dasyurus maculatus NT
- Echiopsis curta NT
- Euastacus armatus DD
- Euastacus balanesis EN
- Euastacus bindal CR
- Euastacus brachytherax EN
- Euastacus claytoni EN
- Euastacus dalagarbe CR
- Euastacus diversus EN
- Euastacus fleckeri EN
- Euastacus girumulayan CR
- Euastacus guruhgi CR
- Euastacus hirsutus EN
- Euastacus jagabar CR
- Euastacus maccai EN
- Euastacus mirangudjin CR
- Euastacus pilosus EN
- Euastacus rieki EN
- Anser erythropus VU
- Ardeolus australis NT
- Bettongia lesueur NT
- Burhinus grallarius NT
- Caloprymnus campestris EX
- Chaeropus ecaudatus EX
- Dasyornis brachypterus EN
- Dasyurus geoffroii NT
- Dasyurus viverrinus NT
- Elusor macrurus EN
- Euastacus australasiensis LC
- Euastacus bidawalis EN
- Euastacus bispinosus VU
- Euastacus clarkae CR
- Euastacus crassus EN
- Euastacus dharawalensis CR
- Euastacus eungella CR
- Euastacus gamilaroi CR
- Euastacus gumar EN
- Euastacus guwinus EN
- Euastacus hystricosus EN
- Euastacus jagara CR
- Euastacus maidae CR
- Euastacus montelthorun CR
- Euastacus polysetosus EN
- Euastacus setosus CR
FULL ACCOUNT FOR: Vulpes vulpes

Euastacus simplex VU
Euastacus sulcatus VU
Euastacus urospinosus EN
Euastacus wiwuru NT
Euastacus yarreauensis VU
Heleioporus australiacus VU
Lagorchestes asomatus EX
Lagorchestes hirsutus VU
Leipoa ocellata VU
Litoria raniformis EN
Macrotis eugenii LC
Macrotis lagotis VU
Mastacomys fuscus NT
Neophema chrysoagarster CR
Notoryctes typhlops DD
Onychogalea fraenata EN
Onychogalea unguifera LC
Pedionomus torquatus EN
Perameles bougainville EN
Perameles gunnii NT
Petrogale penicillata NT
Petrogale xanthopus NT
Phascogale calura NT
Plectrophenax hyperboreus NT
Polytelis alexandrae NT
Potorous longipes EN
Pseudemoia pagenstecheri LC
Pseudocheirus occidentalis VU
Pseudomys higginsi LC
Pseudomys occidentalis LC
Pseudomys shortridgei NT
Sminthopsis dolichura LC
Sminthopsis psammophila EN
Sterna albifrons LC
Sterna nereis VU
Thinornis rubricollis NT
Turnix melanogaster VU

Euastacus spinichelatus EN
Euastacus suttoni VU
Euastacus valentulus LC
Euastacus yanga LC
Euastacus yigara CR
Isodoon obesus LC
Lagorchestes conspicillatus LC
Lagostrophus fasciatus EN
Leporillus conditor VU
Macroderma gigas VU
Macropus parma NT
Macrotis leucura EX
Myrmecobius fasciatus EN
Notoryctes caurinus DD
Numenis tahitiensis VU
Onychogalea lunata EX
Parantechinus apiculis EN
Pelecanoides garnotii EN
Perameles eremiana EX
Petrogale lateralis NT
Petrogale rothschildi LC
Pezoporus occidentalis CR
Phascogale tapoatafa NT
Podiceps cristatus LC
Potorous gilbertii CR
Potorous tridactylus LC
Pseudomys fumeus EN
Pseudomys novaehollandiae VU
Pseudomys oralis VU
Setonix brachyurus VU
Sminthopsis douglasi NT
Spheniscus magellanicus NT
Sterna dougallii LC
Strophurus taeniaca NT
Thylogale billardierii LC

BIBLIOGRAPHY
53 references found for Vulpes vulpes

Management information

Summary: Available from: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1043&context=nwrcinvasive [Accessed 24 January 2010]

Summary: Eradication case study in *Turning the tide: the eradication of invasive species*.

Summary: Impact and management information.

Summary: Management plan, Tasmania.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened). Available from: http://www.iucnredlist.org/ [Accessed 25 May 2011]

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.
Kirkpatrick, Win; Amanda Page and Marion Massam, September 2008. Red Fox (Vulpes vulpes) risk assessment for Australia. Department of Agriculture and Food, Western Australia.

Summary: Models for assessing the risk that exotic vertebrates could establish in Australia have been developed for mammals, birds (Bomford 2003; Bomford 2006, 2008), reptiles and amphibians (Bomford 2006, 2008; Bomford et al. 2005). These Risk Assessment models have been further explored by Western Australia Department of Agriculture & Food (DAFWA) to confirm that they reasonably predict public safety, establishment and pest risks across a full range of exotic species and risk levels. Mammals and birds were assessed for the pest risk they pose if introduced to Australia, by calculating Vertebrate Pests Committee (VPC) Threat Categories. These categories incorporate risk of establishing populations in the wild, risk of causing public harm, and risk of becoming a pest (eg causing agricultural damage, competing with native fauna, etc). The 7-factor Australian Bird and Mammal Model was used for these assessments.

Summary: This report documents work contributing to a project commissioned by the Invasive Animals Cooperative Research Centre to validate and refine risk assessment models used in decisions to import and manage introduced vertebrate species. The intent of the project was to: a) increase predictive accuracy, scientific validation and adoption of risk assessment models for the import and keeping of exotic vertebrates, and b) reduce the risk of new vertebrate pests establishing introduced populations in Australia.

Summary: Management guidelines for all invasive species in Canada.

Summary: Management plan for New South Wales.

Pest Animal Control CRC., undated. European red fox *Vulpes vulpes* feral.com.au

Summary: Available from: http://www.feral.org.au/content/species/fox.cfm [Accessed 19 February 2008]

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Management plan, Western Australia.

General information

Summary: Available from: http://www.iucnredlist.org/apps/redlist/details/106001458/0 [Accessed 16 January 2012]

Summary: Available from: http://www.iucnredlist.org/apps/redlist/details/106001491/0 [Accessed 16 January 2012]

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information

Summary: Concluded that New World and Old World red foxes were conspecifics. However, most New World specimens used in analyses had an Old World origin.

Summary: Reviews: Studies of exotic generalist predators on native fauna in Australia.

Summary: Good review of red fox information