Clarias batrachus

System: Freshwater

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Actinopterygii</td>
<td>Siluriformes</td>
<td>Clariidae</td>
</tr>
</tbody>
</table>

Common name

clarias catfish (English, USA), alimudan (Visayan, Philippines), climbing perch (English, Bangladesh), freshwater catfish (English, Malaysia), Froschwels (German), cá trên trang (Vietnamese), hito (English, Philippines), ikan keling (Malay, Indonesia), ikan lele (Malay), Ito (Kapampangan, Philippines), keli (Malay), klarievyi som (Russian), koi (Bengali, Bangladesh), kug-ga (Punjabi, India), leleh (English), magur (English), mah-gur (Bengali, India), mangri (Hindi, India), marpoo (Telugu, India), masarai (Tamil, India), nga-khoo (Burmese), pa douk (Lao), paltat (Ilocano, Philippines), pla duk (Thai), pla duk dam (Thai), pla duk dan (Thai), pla duk nam juend (Thai), Thai hito (English, Philippines), Thailand catfish (English, Taiwan, province of China), trey andaing roueng (Khmer), trey andeng (Khmer), walking catfish (English), wanderwels (German), Yerivahlay (Malayalam, India), pla duk nam jued (Thai), pantat (English), kawatsi (Kuyunon, Philippines), mungri (Nepali), konnamonni (Finnish), htong batukan (Tagalog, Philippines), cā трéанг (Vietnamese)

Synonym

Silurus batrachus, Linnaeus, 1758
Macropteronotus jagur, Hamilton, 1822
Clarias jagur, (Hamilton, 1822)
Macropteronotus magur, Hamilton, 1822
Clarias magur, (Hamilton, 1822)
Clarias punctatus, Valenciennes, 1840
Clarias assamensis, Day, 1877

Similar species

Summary

Clarias batrachus is native to southeastern Asia and has been introduced into many places for fish farming. Walking catfish, as it is commonly known (named for their ability to move over land), is an opportunistic feeder and can go for months without food. During a drought large numbers of walking catfish may congregate in isolated pools and consume other species. They are known to have invaded aquaculture farms, entering ponds where they prey on fish stocks. *C. batrachus* has been described as a benthic, nocturnal, tactile omnivore that consumes detritus and opportunistically forages on large aquatic insects, tadpoles, and fish.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=62)
Species Description

Clarias batrachus has a broad, flat head and an elongate body which tapers toward the tail. It is readily recognizable as a catfish with four pairs of barbels whiskers and fleshy, papillated lips. The teeth are villiform, occurring in patches on the jaw and palate. Its eyes are small. The dorsal fin is continuous and extends along the back two-thirds of the length of the body but there is no dorsal spine. The dorsal, caudal, and anal fins together form a near-continuous margin; the caudal fin is rounded and not eel-like though it is occasionally fused with the other fins. Its pectoral spines are large and robust and finely serrate along the margins with which it walks accompanied by a back and forth flexion. Their coloration is olive to dark brown or purple to black above, blue green on the sides and white below, with white specks on their rear side. *C. batrachus* may be easily distinguished from many of the North American Ictalurid catfishes in that the walking catfish lacks an adipose fin (Masterson, 2007; Robins, undated; GSMFC, 2006).

Notes

Clarias batrachus can survive out of water for quite sometime using its auxiliary breathing organs and move short distances over land allowing it to migrate to new water bodies (Froese and Pauly, 2009).

Lifecycle Stages

In southeast Asia, spawning period is during the rainy season, when rivers rise and fish are able to excavate nests in submerged mud banks and dikes of flooded rice fields (FishBase, 2003).

Uses

Fisheries: commercial, aquaculture: commercial, aquarium: commercial (FishBase, 2003). An important food fish that is marketed live, fresh and frozen. (FishBase, 2003)

Habitat Description

Walking catfish can be found in a variety of habitats, but they are most commonly encountered in stagnant, muddy or swampy water of high turbidity. Known to inhabit medium to large rivers, swamps, ponds, ditches, flooded fields, rice paddies, and pools left in low spots after rivers have been in flood, it is also reported to occur in intercoastal waterways of salinities up to 18 ppt. It is a tropical species with a moderate tolerance to colder waters with a reported a lower lethal temperature of 9.8°C. During cold dry months, walking catfish burrow into the sides of ponds and streams where they remain dormant until the spring rains begin (Masterson, 2007; FishBase, 2003; GSMFC, 2006).
Reproduction
Clarias batrachus engages in mass spawning migrations in late spring and early summer. Inundated rice paddy fields have been reported as favored spawning grounds over its native range. The pair manifests the 'spawning embrace' which is widely observed in other catfish species. Mating occurs repeatedly for as long as 20 hours. The pair gently nudge each other in the genital region and flick their dorsal fins; male wraps his body around the female, then the female releases a stream of hundreds to thousands of adhesive eggs into the nest or on submerged vegetation. Males guard the nests and embryos hatch in about 30 hours. Both parents guard fry for about three days, when they develop barbles visible to the naked eye and swim freely (GSMFC, 2006; FishBase, 2009, Ros, 2004c).

Nutrition
Clarias batrachus feeds on insect larvae, earthworms, shells, shrimps, small fish, aquatic plants and debris.

General Impacts
Clarias batrachus in South Florida are known to invade commercial aquaculture facilities, often consuming vast numbers of the stocks of fishes (Robins, undated). The impacts from this opportunist feeder are probably most pronounced in small, isolated wetland ponds where walking catfish quickly consume or outcompete other resident populations to become the dominant species in the pond. Resident centrarchids (freshwater sunfish) and native catfish species appear particularly susceptible to impacts from this invader (Masterson, 2007). *C. batrachus* can also negatively impact native amphibian populations by preying on tadpoles. The ability of walking catfish to exploit isolated, ephemeral water bodies allows them to access tadpole prey stocks that other fish cannot reach (Masterson, 2007).

Management Info
Preventative measures: Outside of its native range, numerous countries have banned possession of the *Clarias batrachus*, including the United States, which has classified all members of the family *Clariidae* as *injurious wildlife* which are illegal to possess without a federal permit (Robins, undated).

Pathway
Introduced into Hong Kong from Thailand for aquaculture, (FishBase, 2003). The walking catfish was imported to Florida, reportedly from Thailand, in the early 1960s for the aquarium trade (Courtenay et al. 1986).

Principal source:

Compiler: IUCN/SSC Invasive Species Specialist Group (ISSG)
Review: Pam Fuller USGS/BRD, Nonindigenous Aquatic Species Program. Florida Integrated Science Center. USA

Publication date: 2010-03-27

ALIEN RANGE

[1] CHINA
[1] HONG KONG
[1] JAPAN
[1] PHILIPPINES
[1] TAIWAN
[1] UNITED KINGDOM

[1] GUAM
[2] INDONESIA
[1] PAPUA NEW GUINEA
[1] SRI LANKA
[1] THAILAND

Red List assessed species 2: VU = 2;

Glossoplepis incisus VU
Melanotaenia arfakensis VU

BIBLIOGRAPHY

26 references found for Clarias batrachus

Management information
Summary: Impact information.

Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance. Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Villizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:
The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].

Summary: The discussion paper presents a conceptual risk assessment approach for freshwater fish species that addresses the first two elements (hazard identification, hazard assessment) of the UK environmental risk strategy. The paper presents a few worked examples of assessments on species to facilitate discussion.
Available from: http://www.cefas.co.uk/publications/techrep/tech129.pdf [Accessed 1 September 2005]

Early Detection & Distribution Mapping System (EDDMapS), 2009. Clarias batrachus (Linnaeus, 1758)

Summary: In German

Available from: http://www.datz.de/HHIZ2DH6oBX1aEiZ2DHikBXUqB++.HTML?UID=C2E6CBA1D49C2BB52FB735FCA286A9569AEC CDE5 [Accessed 1 June 2007]

In German from http://www.welse.net/SEITEN/clarias2.htm [Accessed August 2006]
