Crepidula fornicata

Common name
Toffelsneg (English, Sweden), Pantoffelsnecke (English, Germany), American limpet (English, Great Britain), common Atlantic slippersnail (English, USA), slipper limpet (English, USA), oyster-pest (English, Great Britian), crépidule (English, France)

Synonym
- *Crepidula nautiloides*, auct. non Lesson
- *Crepidula maculata*, Rigacci
- *Crepidula mexicana*, Rigacci
- *Crepidula violacea*, Rigacci
- *Crepidula densata*, Conrad
- *Crepidula virginica*, Conrad
- *Crepidula roseae*, Petuch
- *Patella fornicata*, Linné
- *Crypta nautarum*, Mörch

Similar species
- *Crepidula convexa*, *Crepidula onyx*, *Crepidula*

Summary
Crepidula fornicata is a protandrous hermaphrodite mollusc, which means that the animals start their lives as males and then subsequently may change sex and develop into females. This species can tolerate a wide range of environmental conditions. Populations are particularly well developed in wave-protected areas such as bays, estuaries or sheltered sides of wave-exposed islands. *C. fornicata* competes with other filter-feeding invertebrates for food and space, and often occur in enormous numbers. Few management options are available to combat this species. Dredging operations to clear slipper limpets from oyster beds have been attempted in some areas, but it was concluded that further spread of the species could not be prevented.

[view this species on IUCN Red List]
Species Description

Crepidula fornicata’s shell is oval, up to 5cm in length, with a much reduced spire. The large aperture has a shelf, or septum, extending half its length. The shell is smooth with irregular growth lines and white, cream, yellow or pinkish in colour with streaks or blotches of red or brown. *C. fornicata* are commonly found in curved chains of up to 12 animals. Large shells are found at the bottom of the chain, with the shells becoming progressively smaller towards the top MarLIN (2003).

Notes

JNCC (2002) states that, "*C. fornicata* were introduced in association with imported American oysters *Crassostrea virginica*. This species may also be transported on ships’ hulls, and in ballast water in the pelagic larval phase. Historic populations (now extinct) have also been introduced in association with the American hard-shelled clam *Mercenaria mercenaria*. In France, an order during a council in 1932 encouraged the destruction of *C. fornicata*. In Helford River (Essex), British authorities even set a price on *C. fornicata*, viz 5 shillings per limpet in 1949, but only 1 penny in 1953 due to the increasing proliferation (de Montaudouin et al., 1999).

Other species belonging to the same family are: Europe – Mediterranean sea - *C. unguiformis*, *C. moulinsi*; Atlantic side of the U.S.A. - *C. convexa*, *C. onyx*, *C. plana*, *C. maculosa*, *C. acta*, *C. janacus*; Pacific side of the USA - *C. grandis*, *C. adunca*, *C. nummara*; Central America - *C. onyx*, *C. arenata*, *C. excavata*, *C. incurva*, *C. lessoni*, *C. striolata*, *C. uncata*; Southern America - *C. philippiana*, *C. fecunda*, *C. dilatata*, *C. arenata*, *C. onyx*, *C. protea*; Southern Africa - *C. porcellana*, *C. rugosa*, *C. aculeata*; Asia - *C. onyx*, *C. walshi*, *C. grandis*; New Zealand - *C. costata*, *C. monoxyila*; Australia - *C. immersa*, *C. aculeata*. (Blanchard, M., pers. comm., 2005)
Lifecycle Stages

Crepidula fornicata spats settle in isolation or on top of an established chain. If the individual settles alone, it becomes male briefly, passing rapidly on to a female, especially if another animal settles on it to initiate chain formation. Sex change can only occur to the bottom-most male in a stack and takes approximately 60 days, during which the penis regresses and the pouches and glands of the female duct develop. If a juvenile settles on an established stack it develops and may remain as a male for an extended period (up to 6 years), apparently maintained by pheromones released by females lower in the stack (Fretter & Graham, 1981 in MarLIN, 2003). C. fornicata has an obligate planktonic larval stage (Pechenik et al. 2002) that may facilitate natural dispersal. After swimming and feeding in the plankton for at least several weeks (2 to 4), the veliger larvae become competent to metamorphose (Pechenik, 1990, in Pechenik et al. 2002); that is, they become capable of metamorphosing in response to specific external cues such as adult pheromone and microbial films (Pechenik, 1980; Pechenik and Heyman, 1987; McGee and Targett, 1989; Pechenik and Gee, 1993, in Pechenik et al. 2002). In laboratory experiments the authors concluded that, "In the absence of such external cues, the larval form can be maintained for at least an additional 10 days (Pechenik and Lima, 1984; Zimmerman and Pechenik, 1991, in Pechenik et al. 2002). Eventually the larvae metamorphose "spontaneously" in frequently cleaned glassware, in the apparent absence of external cues (Pechenik, 1984; Pechenik and Lima, 1984; Pechenik et al. 1996a, in Pechenik et al. 2002).Collin (2001) states that, "C. fornicata can usually be found attached to rocks or oyster shells, which do not facilitate adult dispersal." However, these species are also known to occur on the carapaces of horseshoe crabs (Botton & Ropes 1988), which could result in occasional long distance dispersal. Dispersal may also be facilitated by human activities such as fouling on the hull of ships, within ballast water (JNCC, 2002) and by accidental transfer linked to aquaculture (Blanchard, 1997).

Uses

Vallet et al. 2001 states that, "In the Bay of Saint-Brieuc, the presence of *C. fornicata* could have a major effect on the suprabenthic community by increasing species number and diversity. This suggests that, for slow swimmers such as decapods, dead and live individual shells of *C. fornicata* provide new habitats where they can hide." Grady et al. (2001) believe that, "*C. fornicata* could indicate age of host horseshoe crabs if horseshoe crabs have a terminal molt or do not molt often as adults, if *C. fornicata* remain on the same horseshoe crab, and if *C. fornicata* age can be determined with some degree of accuracy."
Habitat Description
Crepidula are often abundant in habitats such as shallow bays and the intertidal regions, where they may be exposed to rapid fluctuations in temperature and salinity. *C. fornicata* are common in the intertidal and shallow subtidal regions in New England and Canada, while they are exclusively subtidal in Florida (Collin 2001). Populations are particularly well developed in wave protected areas such as bays, estuaries or sheltered sides of wave exposed islands. The species is found on a variety of substrata but is most abundant in muddy or mixed muddy areas. *C. fornicata* may also, exist on sand or gravel bottoms in low energy environments, in which the accumulation of shells may lead to the formation of a biogenic hard substrate (CIESM, 2000). *C. fornicata* are found on a variety of substrata (rocks, gravel, sand, mud...) and also on metal, plastic, shelves... For metamorphosis, the larvae need a hard substrate, so the original substrat is sandy or gravely. But, when densities rise, the sediment becomes increasingly muddy and anoxic, because of their own bio-deposits and because stacks form traps for suspended matter. This would explain why maximal densities are found in mud (Blanchard, M., pers. comm., 2005). Populations in Europe are mainly found in subtidal regions, between 0 and 20m (Blanchard, 1997, Thielteges).

Reproduction
Crepidula fornicata that is typically found in stacks in which younger males are attached to the shells of larger females, exhibit a peculiar mating system as it is a long - lived protandrous hermaphrodite. This means that the animals start their lives as males and then subsequently may change sex and develop into females. Copulation is internal and larvae are grouped into an egg capsule before their release. Stacks can be viewed as independent mating group with copulation occurring between individuals occupying any position in a chain. Most females spawn twice in a year, apparently after neap tides. The variation of fecundity is very important with concentration between 5000 and 30000 eggs per female depending on the site. Laboratory experiments have revealed that following incubation, approximately 4000 larvae were released per female (MarLIN 2003).

Nutrition
C. fornicata is a suspension-feeder, which is rare for a marine gastropod and is the reason for its spread in eutrophised bays and estuaries (eutrophication may be described as pollution resulting from an excess of nitrates and phosphates discharge that leads to disturbances of the ecosystem such as a shift in the natural species composition or oxygen deficiency near the bottom). We observe that its diet is not only composed mainly of pelagic algae of all size and forms, but also of benthic ones, and detritic and bacterial material. A number of experiments to measure and model trophic fluxes for oyster-farm ponds and shellfish bed management are being conducted in France (Blanchard, M., pers. comm., 2005). MarLIN (2003) states that, "for optimum growth and reproduction, an individual *C. fornicata* being fed with the alga *Phaeodactylum tricornutum* requires 5 x 108 algal cells per gram of flesh wet weight per day."
General Impacts

C. fornicata has been reported to alter sediment characteristics (by removing a huge volume of suspended organic material from the water column, and depositing that filtered material on the bottom as pseudofeces). It is also reported to decrease the abundance of certain suprabenthic species (such as mysids) (Vallet *et al.* 2003). Other studies (de Montaudouin *et al.* 1999), show that the presence of *C. fornicata* does not affect the benthic community and spatial competition with other macrozoobenthic species didn’t occur, but that the habitat became more heterogeneous.

JNCC (2002) states that, "*C. fornicata* competes with other filter-feeding invertebrates for food and space. It is considered a pest on commercial oyster beds, competing for space and food, while depositing mud on them and the mud rendering the substratum unsuitable for the settlement of spat." Some experimental studies de Montaudouin *et al.* (1999) conclude that the potential competition of *C. fornicata* with oysters (*Ostrea edulis*), populations did not show much overlap, and that *C. fornicata* provided the required niches for further hard-substrata species and that a rich association could be built on the initial basis of Crepidula alone that the competition of *C. fornicata* on oyster growth was negligible compared with the effect of competition by oysters themselves (intraspecific competition).

Grall and Hall-Spencer (2003) state that *C. fornicata* is one of many reasons for the decline in local maerl bed habitats in Britain. Live maerl thalli become covered in Crepidula and the interstices of the deposit become clogged with silt; this kills the maerl thalli and dramatically alters associated maerl communities.

The other major reason for the decline in local maerl bed habitats in Britain being industrial exploitation, first by sucking and dredging tons of living material and secondly by depositing overboard tons of suspension matter on or near the beds (Blanchard, M., pers. comm., 2005). Le Pape *et al.* 2004 showed the negative effect of this invasive species on the density of young-of-the-year sole *Solea solea* in coastal nursery areas of the Bay of Biscay (France). Other impacts include increase in the levels of sediments; and, when limpet densities raise, the volume of shell-attached fauna raises and endogeann (domain immediately beneath the ground surface) fauna disappear regularly (Blanchard, M., pers. comm., 2005).
Management Info
Preventative measures: "Identifying potential marine pests – a deductive approach applied to Australia" (Hayes, K.R., et al., 2002) presents an inductive hazard assessment protocol that is simple, does not require large amounts of data, and is capable of grouping hazardous species into high, medium, and low priority. Hazard priority is determined by the invasion potential and impact potential of the species. Invasion potential is expressed as the weighted sum of all vessel movements between Australia and 'infected' bioregions around the world. Impact potential is expressed in terms of human health, economic, and ecological impacts. These were estimated using a web-based questionnaire sent to world-wide experts on each species investigated. The results of this analysis suggest the following hazard groups for Crepidula fornicata:

Relative to human impacts: Low priority – low impact potential and low invasion potential
Relative to ecological and economic impacts: Medium priority – low to medium impact potential and medium invasion potential.

Mechanical: Management experiments have been attempted in response to the invasion of shell fisheries by C. fornicata. Dredging operations to clear slipper limpets from oyster beds have been attempted, but it was concluded that further spread of the species could not be prevented. Dredging involves removal of the surface layer of sediment. Studies suggest that this operation may impact maeirl habitats more severely than proliferation of the gastropod itself since removal of live maeirl cover results in long-term habitat damage (Grall and Hall-Spencer, 2000).

Physical: In France, stocks of C. fornicata limpets are huge: 150,000 metric tons in the Bay of Mount Saint-Michel, 250,000 metric tons in the Bay of Saint-Brieuc, 50,000 Metric tons in the Bay of Brest. A five year programme of industrial collection and treatment of Crepidula has been set by the fishermen and oyster-farmers of Brittany, in the more colonized areas, where biomasses overset 10kg m-2. The survey was conducted by IFREMER (French Research Institute for Exploitation of the Sea). About 30,000 metric tons were collected in a year, and treated for agricultural use, and for calcareous and organic ground enrichment (Blanchard, M., pers. comm., 2005).

Blanchard, 1997., Spread of the slipper limpet Crepidula fornicata in Europe. Current state and consequences
Collin, 1995., Sex, size, and position: a test of models predicting size at sex change in the protandrous gastropod Crepidula fornicata
Pechenik et al. 2002., Relationships between larval nutritional experience, larval growth rates, juvenile growth rates, and juvenile feeding rates in the prosobranch gastropod Crepidula fornicata

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Frederique Viard and Lise Dupont \Evolution et Genetique des Populations Marines\ Station Biologique de Roscoff France
Michel Blanchard IFREMER France.
ALIEN RANGE

[2] ATLANTIC - NORTHEAST
[10] FRANCE
[1] JERSEY
[2] NETHERLANDS
[2] SPAIN
[4] UNITED KINGDOM
[1] WEST MEDITERRANEAN COAST

[2] DENMARK
[2] ITALY
[1] MEDITERRANEAN & BLACK SEA
[1] NORWAY
[1] SWEDEN
[1] UNITED STATES

BIBLIOGRAPHY

47 references found for Crepidula fornicata

Management information
Centre for Environment, Fisheries & Aquaculture Science (CEFAS)., 2008. Decision support tools-Identifying potentially invasive non-native marine and freshwater species: fish, invertebrates, amphibians. Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance. Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Villizi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:
The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].

Conchological Society of Great Britain & Ireland. UNDATED. The current distribution of the slipper limpet, Crepidula fornicata (L. 1758). Conchological Society of Great Britain & Ireland: Registered Charity Number 208205.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Dyrynda, P. 2003. Slipper limpet beds. School of Biological Sciences, University of Wales Swansea server.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: This report is the final report of a two year study designed to identify and rank introduced marine species found within Australian waters (potential domestic target species) and those that are not found within Australian waters (potential international target species).

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: Information on description, economic importance, distribution, habitat, history, growth, and impacts and management of species.

Summary: This database compiles information on alien species from British Overseas Territories.

Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

General information

Summary: A detailed report that includes reproduction and dispersal information as well as detailed locations of the collection of specimens.

Summary: A research paper that examines the impact species has on oyster growth and biodiversity,

Summary: Report showing the unpredictablity of invasions.

Summary: A research paper documenting the genetics of species, but also includes detailed background information and biological information.

Summary: Distribution of invasive species in Poole Harbour in England.

Summary: A research paper examining the effects of species on sediment characteristics.

Summary: A paper that provides suggestion on how to possibly age Horseshoe crabs from *C. fornicata* attached to their bodies.

Summary: A paper that discusses the species impact on Britain s marine ecosystems.

ITIS (Integrated Taxonomic Information System), 2004. Online Database Crepidula fornicata

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Summary: A historical paper that tracks the progress and proliferation of species.

Summary: A research paper that examines the impact species has on oyster growth and biodiversity.

Summary: Using genetics to investigate the origins of the invasion.

Summary: Information on taxonomy and synonyms.