Psidium cattleianum

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophyta</td>
<td>Magnoliopsida</td>
<td>Myrtales</td>
<td>Myrtaceae</td>
</tr>
</tbody>
</table>

Common name

- Erdbeer-Guave (German), strawberry guava (English), cattley guava (English), purple strawberry guava (English), cherry guava (English), Chinese guava (English), goyave de Chine (French), kauaip (English, Pohnpei), waiawi (English, Hawai'i), ngguava (English, Fiji), tuava tinito (English, French Polynesia)

Synonym

- *Psidium littorale*, Raddi

Similar species

Summary

Psidium cattleianum is native to Brazil, but has been naturalised in Florida, Hawai'i, tropical Polynesia, Norfolk Island and Mauritius for its edible fruit. It forms thickets and shades out native vegetation in tropical forests and woodlands. It has had a devastating effect on native habitats in Mauritius and is considered the worst plant pest in Hawai'i, where it has invaded a variety of natural areas. It benefits from feral pigs (*Sus scrofa*) which, by feeding on its fruit, serve as a dispersal agent for its seeds. In turn, the guava provides favourable conditions for feral pigs, facilitating further habitat degradation.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=59)

Species Description

Evergreen shrub or small tree up to 8m tall. Mature branches are gray to reddish-brown with peeling bark and young branches are round and pubescent. Leaves are opposite, simple, entire, glabrous, elliptic to oblong, to 8cm (3 in) long. Flowers to 2.5cm (1.2 in) wide, born singly at leaf axils, with white petals and numerous white and yellow stamens. Fruit is a globose berry, 3-6cm (1.2-2.4 in) long, purple-red, with whitish flesh, usually sweet-tasting when ripe; seeds are numerous.
Uses
The strawberry guava is a shrub naturalised in several subtropical areas. It produces sweet and aromatic fruit, which are appreciated by the inhabitants of La Réunion Island. Processing industries are supplied by fruit gathered from the wild. As strawberry guava thrives in humid areas where the farming potential is low, its cultivation could be a means of providing additional income to farmers, while also establishing a steady supply of fruit to industry and to markets (Normand 2002).

Habitat Description
Psidium cattleianum is found on various Polynesian and Micronesian islands where it occurs as an introduced species on both disturbed land and in native ecosystems. Habitats it is found in include: sub-montane rainforest, montane cloud forest, montane rainforest, moist tropical montane forest, tropical ravine/riperian forest, tropical evergreen forest, deciduous woodland (oak), tropical montane savanna, lowland sub-tropical rainforest, scrub land, grass land, degraded forest, cultivation and agro-forestry (Mauremootoo Dr. J.).

Reproduction
Regeneration of strawberry guava is by seed and by root sprouts, which allow it to undergo expansive vegetative reproduction. Strawberry guava produces an abundance of fruits, the seeds of which are dispersed by birds and mammals. Strawberry guava is a prolific fruiter, with up to 70 seeds per fruit, though most fruits contain a lower number of seeds. Fruiting is more abundant for stems on the edge of the thickets.

General Impacts
P. cattleianum is a habitat-altering weed that poses a major threat to endemic flora by competing for light and soil nutrients. Today the most serious threat to Seychelles forests is the low regeneration of native trees caused by the invasion of alien plant species such as P. cattleianum (Fleischmann, 1997, 1999, in Fleischmann et al. 2006).
Management Info

Preventative measures: A Risk Assessment of Psidium cattleianum for Hawai‘i and other Pacific islands was prepared by Dr. Curtis Daehler (UH Botany) with funding from the Kaulunani Urban Forestry Program and US Forest Service. The alien plant screening system is derived from Pheloung et al. (1999) with minor modifications for use in Pacific islands (Daehler et al. 2004). The result is a score of 18 and a recommendation of: "Likely to cause significant ecological or economic harm in Hawai‘i and on other Pacific Islands as determined by a high WRA score, which is based on published sources describing species biology and behaviour in Hawai‘i and/or other parts of the world."

Physical: Because of the huge quantities of seed that are dispersed by feral pigs, and other exotic invasive species, feral species management is a practical and necessary first step in strawberry guava management. Manual and mechanical control measures work reasonably well and are recommended where practical. Seedlings and saplings originating from seed can be uprooted. Uprooted plants may resprout or re-root in areas with greater than 2000mm of rain/year or drier areas after prolonged rain, especially if the plants are set on the ground. Manual and mechanical methods are less effective on root sprouts.

Chemical: A number of effective chemical control measures have been developed. Strawberry guava is sensitive to picloram, dicamba, glyphosate, and triclopyr. It has been shown that undiluted picloram (Tordon 22K) is highly effective on strawberry guava as a cut stump treatment. Tordon 22K was used at Hawai‘i Volcanoes but discontinued because of unfavourable effects on non-target plants. It was replaced by Tordon RTU, which was nearly as effective, but less harmful to surrounding vegetation. Undiluted dicamba (Banvel) proved to be highly effective in a cut surface treatment. Additionally, undiluted glyphosate (Roundup) has proven to be effective using a "hack and squirt" method. Resource Managers in Hawai‘i found undiluted triclopyr ester (Garlon 4) to be effective as a cut-stump treatment, with 80% of plants dead and 90% of treated plants without resprouts after 21 months. A frill application of undiluted triclopyr amine (Garlon 3A) was somewhat less effective, with 11 of 20 stems dead and all trees defoliated after 21 months. Fifty percent Garlon 4 and 3A were about 50% effective. A major drawback of cut-stump treatment methods in very wet areas (>5000mm rainfall/yr) was resprouting of slash from cut stump and wood fragments from felling larger trees. Garlon is recommended because of its lack of mobility and relatively short half-life, 4-6 weeks. In addition, the research is more thorough and definitive on control methods for Garlon than other herbicides.

Biological: Biological control is the only feasible long-term management strategy for strawberry guava. However, until recently, biological control has been perceived as unfeasible because common guava, grown commercially in Hawai‘i, is a congener of strawberry guava. Biological control is being reexamined. Several insects defoliate strawberry guava in its natural range. It is possible that insect biological control agents could be found that do not attack common guava. Memoranda of agreement has been concluded between the University of Hawai‘i and two Brazilian Universities to locate species attacking strawberry guava and not common guava. It is thought that highly specific insect pests can be found because common guava and strawberry guava are sympatric in their natural range.

Pathway

Introduced by acclimatisation societies.

Principal source: Pacific Islands Ecosystems at Risk, (PIER, 2002)
Compiler: Dr. John Mauremootoo (Plant Conservation Manager) & Mr. Joseph Rodriguez (Research Assistant on Alien Plant Management). Mauritian Wildlife Foundation & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Dr. John Mauremootoo (Plant Conservation Manager) & Mr. Joseph Rodriguez (Research Assistant on Alien Plant Management). Mauritian Wildlife Foundation.

Publication date: 2010-08-16

ALIEN RANGE
[2] UNITED STATES

Red List assessed species 14: CR = 7; EN = 3; VU = 4;

Chassalia capitata CR
Hemignathus lucidus CR
Hyposipetes olivaceus VU
Otus pauliani CR
Pseudonestor xanthophrys CR
Pterodroma sandwichensis VU
Zosterops chloronothus CR

Coracina typica VU
Humboltia flavirostris EN
Humblotia flavirostris EN
Meryta brachypoda CR
Palmeria dolei CR
Psittacula eques EN
Puffinus newelli EN
Zosterops mouroniensis VU

BIBLIOGRAPHY
34 references found for Psidium cattleianum

Management information

Summary: A study on the use of a screening system to assess proposed plant introductions to Hawaii or other Pacific Islands and to identify high-risk species used in horticulture and forestry which would greatly reduce future pest-plant problems and allow entry of most nonpests.

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Mauremootoo, J. R. unpublished. CBD case study - guava in Mauritius.
Summary: This article reviews the status of Psidium in Mauritius, its impact on native biodiversity, the efforts being made to control the species and possible future avenues for management.

Summary: This database compiles information on alien species from British Overseas Territories.
Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: This article reviews the history of introduced animals and plant in Mauritius and their effects on the indigenous flora & fauna. Management measures are reviewed & illustrated with case studies. Future prospects for invasive species management are discussed

Langeland, K. A. and Burks, K. C (Eds) 1998. Identification and Biology of Non-Native Plants in Florida s Natural Areas, University of Florida. Psidium cattleianum
Summary: Two areas of wet forest were sampled to determine the extent of invasion by weed species. In both cases the canopy was dominated by native species but the seedling layer by introduced species, notably Psidium and Ligustrum. Macdonald, I.A.W., Th?baut, C., Strahm, W.A., & Strasberg, D. 1991. Effects on alien plant invasions on native v?g?tation remnants on La Reunion (Mascarene Islands, Indian Ocean). Environmental Conservation, 18, 51-61.
Summary: Article focusing on the interaction between alien birds and plants describing many examples and the ecological feedback that takes place between an introduced bird and plants it unknowingly introduces as food.
Summary: Available from: http://muse.jhu.edu/journals/pacific_science/v059/59.1motley.pdf [Accessed 10th February 2006]

Tassin, J., Rivière, J.N., Cazanove, M., Bruzzeses, E. 2006. Ranking of invasive woody plant species for management on Réunion Island. Weed research 46, 388-403

Summary: L'inventory de 318 espèces de plantes ligneuses introduites à la Réunion, permet d'en identifier 132 comme naturalisées dans les écosystèmes naturels. 26 de ces espèces choisies parmi les plus envahissantes ont été classées en fonction de leur impact biologique sur les écosystèmes indigènes.