Alliaria petiolata

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophyta</td>
<td>Magnoliopsida</td>
<td>Capparales</td>
<td>Brassicaceae</td>
</tr>
</tbody>
</table>

Common name
Jack-by-the-hedge (English), hedge garlic (English), mustard root (English), garlickwort (English), garlic mustard plant (English), Jack-in-the-bush (English), poor man's mustard (English), garlic root (English), sauce-alone (English)

Synonym
- Alliaria officinalis, Andrz
- Sisymbrium alliaria
- Alliaria alliaria, Scop.
- Sisymbrium officinalis, DC
- Erysimum alliaria, L.

Similar species
Viola, Geum, Dentaria, Osmorhiza claytonia, Saxifraga virginica

Summary
It is believed that European settlers brought Alliaria petiolata to North America for cooking purposes. Alliaria petiolata may outcompete native herbaceous species and negatively impact ecosystems of invaded areas. Alliaria petiolata acts as a population sink for certain butterflies. Its seeds are transported by humans, on animals, and in water. Other long-distance vectors have not been identified.

Species Description
Alliaria petiolata is a biennial that starts its first year with a slender taproot and a rosette of kidney-shaped, dark-green leaves that stay green through the winter. The leaves smell like garlic when crushed. It develops into a mature flowering plant in spring if the second year, producing a flowering stalk with numerous white flowers, each composed of 4 petals in a 'cross', 6mm in diameter. The flowering stalk is lined with alternate leaves that are triangularly shaped with sharply toothed edges. Seeds are black and oblong and found in a slender seed pod called a siliqua. *A. petiolata* typically grows to 0.5-1.0m tall.
Lifecycle Stages

Alliaria petiolata is a biennial. It produces seeds by early summer and then turns yellow and dies in late summer. Seeds can lie dormant for up to six years and require a cold period to germinate. Seeds of garlic mustard are dormant at maturity and require a cold period to germinate. Seed longevity has not been determined specifically but seeds have been known to germinate as long as six years after production. The majority of seeds germinate during the first spring following dispersal and the seedlings become established before the canopy closes over. A few seeds germinate in subsequent years. If seedlings develop within dense beds of second year rosettes, they are generally not successful as they cannot compete with the established plants. Because the majority of seeds germinate during their first spring, garlic mustard produces most of its flowering shoots in alternate years. For the same reason, only a small seed bank of reserve seeds forms in the soil.

Uses

Alliaria petiolata is used as a garlic flavoured herb and is high in vitamin A and C.

Habitat Description

Alliaria petiolata prefers shade but has been found in areas with full sunlight. It prefers moist, rich soil but is found in sand, loam, clay, limestone, and sandstone substrates. *A. petiolata* is found mostly in deciduous forest areas. It is one of the few invasive plants that can invade and dominate the understory of forested areas. Invasion is more likely in floodplain forests, forest edges, stream banks, and other disturbed areas, such as trail edges and road sides. *A. petiolata* is less common on acidic soils.

Reproduction

Alliaria petiolata self-pollinates but it can also be pollinated by insects, including bees and flies. Humans, other animals, and water currents disperse seeds. Wind dispersal is ineffective. A single plant produces an average of 136 to 295 seeds, depending on the size of the plant and the quality of the soil and habitat. Seedling survival rates vary from 1.4 to 42.3%.

Nutrition

Alliaria petiolata prefers soils high in lime.

General Impacts

Alliaria petiolata can form dense stands because it has no natural predators, and it thrives in disturbed areas. In many forest areas of the eastern and midwestern USA, *A. petiolata* outcompetes native plants for light, nutrients, moisture and soil. Wildlife species dependant on these native plants for food are left without these valuable resources (PCA, 2006). The presence of garlic mustard interferes with oviposition of the rare native butterflies *Pieris napi oleraceae* and West Virginia white butterfly (please see *Pieris virginiensis* for more details on its conservation status). The native hosts of *P. napi oleraceae* and *P. virginiensis* are toothworts *Cardamine concatenata* [*Dentaria laciniata*] and *Cardamine* [*Dentaria*] *diphylla*. Eggs laid by females hatch but larvae are unable to complete development on garlic mustard (NatureServe. 2007).
Management Info

Physical: Control of garlic mustard, whether they are small or large infestations, requires a long term commitment as the seeds of garlic mustard can remain viable in the soil for five years. Suggestions (Marc Imlay pers.comm., in Aliens-L March 2005) on handling the seed bank problem with garlic mustard include immediately catching new populations which may not have a seed bank, as well as removal of the green reproductive stage in autumn and winter. New studies indicate that cut, flowering garlic mustard may form viable seed. Until more information is available, cut or pulled stems should be removed from the site whenever feasible (Solis, K. 1998). In the case of small infestations, plants can be hand removed but care must be taken to see that the entire root system is removed. Best results are achieved when the soil is soft and moist and achieved by grasping low and firmly on the plant and tugging gently until the main root loosens from the soil and the entire plant pulls out. Pulled plants should be removed from the site if at all possible, especially if flowers are present. For larger infestations of garlic mustard, or when hand-pulling is not practical, flowering stems can be cut at ground level or within several inches of the ground, to prevent seed production. If stems are cut too high, the plant may produce additional flowers at leaf axils. Once seedpods are present, but before the seeds have matured or scattered, the stalks can be clipped, bagged and removed from the site to help prevent continued build-up of seed stores. This can be done through much of the summer (PCA, 2006).

Chemical: Glyphosate controls A. petiolata well, but should be applied during the dormant season to avoid damaging native species. If applied after germination, glyphosate will significantly reduce seedling populations. Any herbs or graminoids that are green at the time of application will be damaged. Bentazon appears suitable for use in many forest communities but should be tested further before widespread use. 2,4-D and Acifluorfen are not recommended for control of A. petiolata.

Biological: Research in North America and Europe began in 1998 with field surveys for potential control agents. No releases of agents have yet been made against garlic mustard (Blossey et al. 2002.)

Pathway
Introduced by settlers for food and medical purposes.

Principal source:

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Victoria Nuzzo, Natural Area Consultants. USA

Publication date: 2006-12-08

ALIEN RANGE

[2] CANADA

[23] UNITED STATES

[1] NEW ZEALAND

BIBLIOGRAPHY
18 references found for *Alliaria petiolata*

Management information

Summary: Research in biological control.

European and Mediterranean Plant Protection Organization (EPPO). 2006. *Guidelines for the management of invasive alien plants or potentially invasive alien plants which are intended for import or have been intentionally imported*. EPPO Bulletin 36 (3), 417-418.

Summary: A report on the threats and control measures.

Summary: A report on distribution, habitat, distribution, and detailed control measures.

Summary: A report on description, habitat, distribution, reproduction methods, ecological threats, and management practices.

Summary: A report on description, distribution, introduction, benefits, threats, and control measures.

Invasive Exotic Plants of Canada. Erich Haber, National Botanical Services, Ottawa, ON, Canada (2001).

Summary: A report on history, description, habitat, biology, and control measures.

Summary: Factsheet with information on management and impacts.

Summary: Viability of seed- management note.

Summary: Gives common names and synonyms. Also a report on description, distribution, control measures, and impact.

General information

ITIS (Integrated Taxonomic Information System). 2004. *Online Database Alliaria petiolata*

Summary: An online database that provides taxonomic information, common names, synonymy and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals. Available from: http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value=184481 [Accessed December 31 2004]

MOBOT Missouri Exotic Pest Plants

Summary: Missouri Exotic Pest Plants

Summary: Provides distribution maps of butterflies of the United States.

USDA The Plants Database. Natural Resources Conservation Service (2002).

Summary: Details about synonyms, distribution, and taxonomy.