Felis catus

- **System:** Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Mammalia</td>
<td>Carnivora</td>
<td>Felidae</td>
</tr>
</tbody>
</table>

Common name
cat (English), domestic cat (English), pusiniveikau (English, Fiji), house cat (English), Hauskatze (German), poti (Maori), feral cat (English)

Synonym

Similar species

Summary

Felis catus was domesticated in the eastern Mediterranean c. 3000 years ago. Considering the extent to which cats are valued as pets, it is not surprising that they have since been translocated by humans to almost all parts of the world. Notable predators, cats threaten native birdlife and other fauna, especially on islands where native species have evolved in relative isolation from predators.

[view this species on IUCN Red List]

Species Description

Felis catus is a small animal in the wild (up to 5kg, but more commonly 1.5 - 3.0kg) but may be considerably heavier when domesticated. Colour is extremely variable in domesticated varieties and feral cats commonly revert to black, tabby or tortoiseshell with varying extents of white starting from the belly and breast.

Lifecycle Stages

Gestation: 65 days. Weaning: 35-40 days. Sexual maturity: 9 months.
Habitat Description

Feral cats adapt to a variety of habitat types and circumstances. On the Australian continent they inhabit forests and woodland habitats in eastern, western and northern parts of the country (Dickman 1996). On Hahajima Island, Japan, feral cats have been observed widely in various kinds of habitats, including primary forests (Kawakami and Higuchi 2002). On Macquarie Island, (a sub-Antarctic Australian island) most cats live in herb-field or tussock grassland (Brothers Skira and Copson 1985), showing an ability to adapt to difficult terrain. A study of the habitat use and diet of feral cats in a Mediterranean habitat in a riparian reserve in central California (Hall et al. 2000, in Brickner 2003) can probably reflect on the situation in other areas with similar climatic areas. Cats in the reserve seemed to strongly prefer staying in riparian habitat. Hall and colleagues (2000) suggest that this habitat provides ample cover and perhaps a variety of prey, especially birds. Cats in the study foraged mostly in the adjacent fields and annual grasslands and, to a lesser extent, in the riparian habitat (in Brickner 2003).

Reproduction

Domestic cats are intensive breeders, maybe due to the seasonal estrous cycle of the females, during which each female comes into heat several times until pregnancy or end of cycle (Gunther and Terkel 2002, in Brickner 2003). A female cat reaches reproductive maturity between 7 to 12 months of age can be in estrous as many as five times a year (Ogan and Jurek 1997, in Brickner 2003). The gestation period lasts 63 to 65 days (Nowak 1991, in Brickner 2003) and the average litter is four to six kittens (O’Donnell 2001, in Brickner 2003). Cats can reproduce any month of the year, where food and habitat is sufficient. An adult female may produce three litters per year (Fitzwater 1994, in Brickner 2003).
Nutrition

Male and female feral cat home ranges overlap (Say and Pontier 2004). The mean home range for feral cats in Hawaiian forests was 5.74km² for males and 2.23km² for females (Smucker et al. 2000). Australian studies have given mean home ranges of 7 to 28 hectares for domestic cats and up to 249.7 hectares for feral cats; while a New Zealand study posted home ranges of between 75 hectares and 985 hectares. Prey availability is a primary factor in determining home range size for feral cats (Edwards et al. 2001; Barratt 1997). Cat activity is bimodal, with peaks near dawn and dusk (Konecny 1987).

The diet of feral cats on islands may vary significantly to that of feral cats on the mainland, with cats often taking advantage of alternative food sources. On the tiny 28 hectare Herekopare Island, New Zealand, for example, there are no introduced or native species of mammals. Prior to elimination of feral cats there in 1970, fairy prion (see Pachyptila turtur in IUCN Red List of Threatened Species) comprised the bulk of the diet with other sea birds and occasional land birds making up most of the remainder (Fitzgerald and Veitch 1985, in Dickman 1996). The weta (a native insect in the order Orthoptera) also appeared to be important to individual cats; two cats' stomachs were found to contain over 100 insects each. Similarly, in the Galapagos Islands, birds are an important component of the feral cat's diet, with cats sometimes taking birds of similar mass to themselves, such as frigate birds (Fregata spp.), pelicans (Pelecanus spp.) and flightless cormorants (Phalacrocorax spp.) (Konecny 1987, in Dickman 1996). On Aldabra Atoll, Seychelles, hatchlings of the green turtle (see Chelonia mydas in IUCN Red List of Threatened Species) are seasonally predominant in the diet of feral cats (Seabrook, 1989). On Christmas Island, the introduced black rat (Rattus rattus) comprises almost one third of the diet of feral cats by weight, however, 21% of the diet is comprised of the large flying-fox (see Pteropus melanotus in IUCN Red List of Threatened Species) and 28% of the imperial pigeon (see Ducula whartoni in IUCN Red List of Threatened Species) (Tidemann et al. 1994, in Dickman 1996).

Click here to see Major prey of feral cats in Australia (source: Dickman 1996).
General Impacts
The most obvious impact of feral cats is the predatory impact they exert on native prey populations; this has resulted in the probable local or regional decline or extinction of many species (Dickman 1996). However, unambiguous evidence of cats causing a decline in a prey species is difficult to find as other factors, such as other predator species, may also be involved in the decline (Dickman 1996). One exception to this is a study by Saunders (1991) which showed that cats killed 7% of nestlings of red-tailed cockatoos (*Calyptorhynchus magnificus*) over 11 breeding seasons in Western Australia. Several reintroduction programmes in Australia have failed, due to the predation pressure exerted by feral cats, often in conjunction with foxes. For example, the success of the reintroductions of the golden bandicoot (*Isoodon auratus*) and the burrowing bettong (*Bettongia lesueur*) in the Gibson Desert, Western Australia was hindered primarily by feral cat predation. In general, the predatory impact of cats primarily affects birds and small to medium-sized mammals (Dickman 1996). Endangered species around the world are threatened by the presence of cats, including the black stilt (see *Himantopus novaezelandiae in the IUCN Red List of Threatened Species*) (New Zealand), the Okinawa woodpecker (see *Sapheopipo noguchii in IUCN Red List of Threatened Species*) (Japan) and the Cayman Island ground iguana (see *Cyclura lewisi in IUCN Red List of Threatened Species*), to list just some of the many species effected.

Changes in island fauna after the introduction of cats can provide compelling evidence of their predatory impact. Cats have been introduced to 40 islands off the coast of Australia; seven off the coast of New Zealand and several dozen islands elsewhere in the Pacific (Dickman 1992a, Veitch 1985, King 1973 1984, in Dickman 1996). Feral cats have been implicated in the decline of at least six species of island endemic birds in New Zealand, including the Stephens Island wren, the sooty shearwater (*Puffinus griseus*) and the kakapo (*Strigops habroptilus*), as well as 70 local populations of insular birds (King 1984, in Dickman 1996). The elimination of cats often leads to an increase in the population size of prey species. For example, following removal of cats from Little Barrier Island, New Zealand, the stitchbird (*Notiomystis cincta*) increased from less than 500 individuals to 3000 individuals in just a few years (Griffin *et al*. 1988, in Dickman 1996).
Management Info

Cats were first domesticated in Egypt around 2000 BC (Serpell 1988, in Coleman et al. 1997, in Brickner 2003) and brought to Britain by 300AD by the Romans. European colonists introduced them around the globe (Coleman et al. 1997, in Brickner 2003). As cats are often revered as pets in our society this raises the moral dilemma of how to handle them when they have become a threat to native wildlife. Brickner (2003) suggests that animal rights organisations that condemn cat control via killing are over-looking the approximately 275 million animals killed by 9 million cats in Britain alone (Woods et al. in press). Obviously there are two quite different situations for management of the species, depending on the status of the cat: one is where a cat is a domesticated household pet and the other is when a cat has gone wild or feral and has no owner to protect and feed it.

When a cat is a pet, there are a number of ways in which to help prevent damage caused to wildlife. Brickner (2003) suggests keeping a cat in at night, fitting it with a bell, neutering the animal when it is young and giving it toys. However, the divided results of several investigations shows that the positive outcome of such actions is uncertain. Barrette (1998) found that fitting cats with bells has no significant effect on the amount of prey caught, whereas Ruxton et al. (2002) found that equipping cats with bells reduced prey delivery rates by about 50% (in Brickner 2003). Woods, McDonald and Harris (2003) found that the number of birds and herpetofauna brought home by cats was significantly lower in households that feed birds (but the number of actual different types of bird species killed was greater in households that feed birds). The number of mammals brought home per cat was lower when cats were equipped with bells or kept indoors at night, however, the number of herpetofauna brought home was greater when cats were kept in at night. The outcome of this is that there appears to be a subjective choice to be made as to whether it is more important to protect herpetofauna or mammals. Obviously, if the mammals being caught are introduced species, such as rats and mice, this raises another dilemma.

In the second situation, when a cat is feral and threatening wildlife, a more severe means of controlling cats appears justified. In 1992 the Australian Parliament passed the Endangered Species Protection Act 1992, which obligates the commonwealth to provide a Threat Abatement Plan (TAP) for each listed threatening process, including one for feral cats (Brickner 2003). The key objectives of the feral cat TAP are: eradicate feral cats from islands where they threaten vulnerable native animals; prevent feral cats from occupying new islands where they may be a threat to native communities; promote the recovery of species threatened by feral cats; improve the effectiveness and humaneness of cat control methods and improve the understanding of the impacts of feral cats on native animals. The use of visual lures (such as feathers and cotton wool) and attractants (such as tuna oil) are currently being tested in an effort to attract greater numbers of feral cats to traps and baits. The impact of feral cats on native wildlife is being studied in various parts of Australia in order to have it quantified (Brickner 2003). Predation by feral cats was listed as a Key Threatening Process under the Federal Endangered Species Protection Act 1992. A Threat Abatement Plan for Predation by Feral Cats was produced in 1999 and amended in 2008 to promote the recovery of vulnerable and endangered native species and threatened ecological communities (Environment Australia 1999 and DEWHA 2008). A recently published review (Denny and Dickman (2010) assesses the efficacy of the methods used to estimate relative abundance of cats; describes currently used cat control methodologies; and discusses possible future directions for the control of cats in Australia. It also includes details of the current legislative framework that exists for cat control in Australia; describes the ecology of feral and stray cats exploiting various habitats. Please follow this link to view Denny E. A & C. R. Dickman 2010. Review of cat ecology and management strategies in Australia.
Pathway
Many ships of the 18th and 19th centuries were infested with rats and so carried cats to control them. Taken by humans as pets then left behind or the young dispersed.

Principal source:

Compiler: IUCN/SSC Invasive Species Specialist Group (ISSG)
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review:

Publication date: 2010-09-15

ALIEN RANGE

[1] AMERICAN SAMOA
[1] ANTIGUA AND BARBUDA
[2] BAHAMAS
[1] BERMUDA
[2] BRITISH INDIAN OCEAN TERRITORY
[5] CAYMAN ISLANDS
[2] COOK ISLANDS
[1] DOMINICAN REPUBLIC
[1] FALKLAND ISLANDS (MALVINAS)
[3] FRANCE
[5] FRENCH SOUTHERN TERRITORIES
[1] GUAM
[1] HUNGARY
[1] JAMAICA
[8] KIRIBATI
[3] MAURITIUS
[22] MEXICO
[1] MONTserrat
[2] NETHERLANDS ANTILLES
[28] NEW ZEALAND
[4] NORTHERN MARIANA ISLANDS
[1] PAPUA NEW GUINEA
[1] PITCAIRN
[1] REUNION
[1] SAINT LUCIA
[2] SAMOA
[6] SEYCHELLES
[3] SOUTH AFRICA
[1] SWITZERLAND
[1] TOKELAU
[1] ANGUILLA
[25] AUSTRALIA
[1] BARBADOS
[1] BRAZIL
[1] CANADA
[1] CHRISTMAS ISLAND
[1] DJIBOUTI
[5] ECUADOR
[7] FIJI
[6] FRENCH POLYNESIA
[1] GUIADELOUPE
[1] HAITI
[1] ISRAEL
[4] JAPAN
[1] MADAGASCAR
[1] MAYOTTE
[4] MICRONESIA, FEDERATED STATES OF
[1] NAMIBIA
[3] NEW CALEDONIA
[1] NORFOLK ISLAND
[3] PALAU
[1] PERU
[1] PUERTO RICO
[3] SAINT HELENA
[1] SAINT PIERRE AND MIQUELON
[2] SAO TOME AND PRINCIPE
[2] SOLOMON ISLANDS
[4] SPAIN
[1] TAIWAN
[1] TONGA
GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: Felis catus

[2] TURKS AND CAICOS ISLANDS
[2] UNITED KINGDOM
[3] UNITED STATES MINOR OUTLYING ISLANDS
[1] VIRGIN ISLANDS, U.S.

Red List assessed species 587: EX = 44; EW = 3; CR = 104; EN = 135; VU = 132; NT = 82; DD = 16; LC = 71;

- Acanthophis rugosus LC
- Acrocephalus aequinoctialis EN
- Acrocephalus luscinius CR
- Acrocephalus rodericanus EN
- Acrocephalus taiti VU
- Actenoides bougainvilliei VU
- Alauda razae CR
- Amblysomus corriae NT
- Anarhynchus frontalis VU
- Anas chlorotis EN
- Anas wyyvilliana EN
- Antechinomys laniger LC
- Anas aucklandica VU
- Anas eatoni VU
- Anthropornis santovestris VU
- Apalopteron familiare VU
- Aphelocoma coerulescens VU
- Apteryx australis VU
- Apteryx mantelli EN
- Aspidoscelis catalinensis VU
- Bavayia crassicollis DD
- Bavayia exsuicida EN
- Bavayia goroensis EN
- Bavayia montana DD
- Bavayia pulchella NT
- Bavayia sauvagii DD
- Brachylophus vitiensis CR
- Brattellia rufescens EX
- Branta sandvicensis VU
- Bulweria fallax NT
- Burramys parvus CR
- Cabalus modestus EX
- Caledoniscincus atropunctatus LC
- Caledoniscincus australocaldonicus LC
- Caledoniscincus chazeaui EN
- Caledoniscincus festivus LC
- Caledoniscincus orestes EN
- Caloprymnus campestris EX
- Camarhynchus heliobates CR
<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprimulgus noctitherus</td>
<td>EN</td>
</tr>
<tr>
<td>Celatiscincus similis</td>
<td>EN</td>
</tr>
<tr>
<td>Celestus warreni</td>
<td>CR</td>
</tr>
<tr>
<td>Chaeropus ecaudatus</td>
<td>EX</td>
</tr>
<tr>
<td>Chalcides viridanus</td>
<td>LC</td>
</tr>
<tr>
<td>Charadrius melodus</td>
<td>NT</td>
</tr>
<tr>
<td>Charadrius obscurus</td>
<td>EN</td>
</tr>
<tr>
<td>Chaunoprogicus ferroprostris</td>
<td>EX</td>
</tr>
<tr>
<td>Chlamydosaurus kingii</td>
<td>LC</td>
</tr>
<tr>
<td>Chrysoconyx basalis</td>
<td>LC</td>
</tr>
<tr>
<td>Cnemaspis kandiana</td>
<td>LC</td>
</tr>
<tr>
<td>Coenocorypha aucklandica</td>
<td>NT</td>
</tr>
<tr>
<td>Coleura seychellensis</td>
<td>CR</td>
</tr>
<tr>
<td>Columba argentina</td>
<td>CR</td>
</tr>
<tr>
<td>Columba jouyi</td>
<td>EX</td>
</tr>
<tr>
<td>Columba versicolor</td>
<td>EX</td>
</tr>
<tr>
<td>Conolophus subcristatus</td>
<td>VU</td>
</tr>
<tr>
<td>Coracina newtoni</td>
<td>CR</td>
</tr>
<tr>
<td>Corvus kubaryi</td>
<td>CR</td>
</tr>
<tr>
<td>Crex crex</td>
<td>LC</td>
</tr>
<tr>
<td>Crocidura trichura</td>
<td>CR</td>
</tr>
<tr>
<td>Cryptoblepharus novocaledonicus</td>
<td>LC</td>
</tr>
<tr>
<td>Ctenosaura palaeis</td>
<td>EN</td>
</tr>
<tr>
<td>Cyanoramphus cookii</td>
<td>EN</td>
</tr>
<tr>
<td>Cyclura carinata</td>
<td>CR</td>
</tr>
<tr>
<td>Cyclura cornuta</td>
<td>VU</td>
</tr>
<tr>
<td>Cyclura onchiopsis</td>
<td>EX</td>
</tr>
<tr>
<td>Cyclura ricordii</td>
<td>CR</td>
</tr>
<tr>
<td>Dasycercus cristicauda</td>
<td>LC</td>
</tr>
<tr>
<td>Dasyporus broadbenti</td>
<td>LC</td>
</tr>
<tr>
<td>Dasyurus geoffroi</td>
<td>NT</td>
</tr>
<tr>
<td>Dasyurus maculatus</td>
<td>NT</td>
</tr>
<tr>
<td>Dasyurus viverrinus</td>
<td>NT</td>
</tr>
<tr>
<td>Dierogekko insulatus</td>
<td>NT</td>
</tr>
<tr>
<td>Dierogekko koniambo</td>
<td>CR</td>
</tr>
<tr>
<td>Dierogekko poumensis</td>
<td>CR</td>
</tr>
<tr>
<td>Dierogekko validiclavis</td>
<td>EN</td>
</tr>
<tr>
<td>Diomedea antipodensis</td>
<td>VU</td>
</tr>
<tr>
<td>Diomedea exulans</td>
<td>VU</td>
</tr>
<tr>
<td>Diplothrix legata</td>
<td>EN</td>
</tr>
<tr>
<td>Dipodomys margaritae</td>
<td>CR</td>
</tr>
<tr>
<td>Duplicula aurorae</td>
<td>EN</td>
</tr>
<tr>
<td>Dysmorodrepanis munroi</td>
<td>EX</td>
</tr>
<tr>
<td>Elaenia ridleyana</td>
<td>VU</td>
</tr>
<tr>
<td>Eleutherodactylus barlagnei</td>
<td>EN</td>
</tr>
<tr>
<td>Eleutherodactylus pinchoni</td>
<td>EN</td>
</tr>
<tr>
<td>Emballonura semicaudata</td>
<td>EN</td>
</tr>
<tr>
<td>Celatiscincus euryotis</td>
<td>EN</td>
</tr>
<tr>
<td>Celestus anelpistus</td>
<td>CR</td>
</tr>
<tr>
<td>Cettia haddeni</td>
<td>NT</td>
</tr>
<tr>
<td>Chalcides simonyi</td>
<td>EN</td>
</tr>
<tr>
<td>Chalinolobus tuberculatus</td>
<td>VU</td>
</tr>
<tr>
<td>Charadrius mongolus</td>
<td>LC</td>
</tr>
<tr>
<td>Charadrius sanctaehelenaiae</td>
<td>CR</td>
</tr>
<tr>
<td>Chelonina mydas</td>
<td>EN</td>
</tr>
<tr>
<td>Chlamyphorus truncatus</td>
<td>DD</td>
</tr>
<tr>
<td>Chthonicola sagittata</td>
<td>LC</td>
</tr>
<tr>
<td>Coccyzus ferrugineus</td>
<td>VU</td>
</tr>
<tr>
<td>Coenoceryx pusilla</td>
<td>VU</td>
</tr>
<tr>
<td>Collocalia elaphra</td>
<td>VU</td>
</tr>
<tr>
<td>Columba dubeisi</td>
<td>EX</td>
</tr>
<tr>
<td>Columba junoniae</td>
<td>NT</td>
</tr>
<tr>
<td>Conilurus penicillatus</td>
<td>NT</td>
</tr>
<tr>
<td>Copsychus sechellarm</td>
<td>EN</td>
</tr>
<tr>
<td>Corvus hawaiiensis</td>
<td>EW</td>
</tr>
<tr>
<td>Coturnix novaezelandiae</td>
<td>EX</td>
</tr>
<tr>
<td>Crocidura canariensis</td>
<td>EN</td>
</tr>
<tr>
<td>Crotalus caliginosus</td>
<td>CR</td>
</tr>
<tr>
<td>Ctenosaura bakeri</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanoramphus novaezelandiae</td>
<td>VU</td>
</tr>
<tr>
<td>Cyclura collei</td>
<td>CR</td>
</tr>
<tr>
<td>Cyclura lewisi</td>
<td>CR</td>
</tr>
<tr>
<td>Cyclura pinguis</td>
<td>CR</td>
</tr>
<tr>
<td>Cyclura stejnegeri</td>
<td>EN</td>
</tr>
<tr>
<td>Dasyornis brachypterus</td>
<td>EN</td>
</tr>
<tr>
<td>Dasyurus albopunctatus</td>
<td>NT</td>
</tr>
<tr>
<td>Dasyurus hallucatus</td>
<td>EN</td>
</tr>
<tr>
<td>Dasyurus spartacus</td>
<td>NT</td>
</tr>
<tr>
<td>Dierogekko inexpectatus</td>
<td>CR</td>
</tr>
<tr>
<td>Dierogekko kaalaensis</td>
<td>CR</td>
</tr>
<tr>
<td>Dierogekko nehoueusensis</td>
<td>CR</td>
</tr>
<tr>
<td>Dierogekko thomaswhitie</td>
<td>CR</td>
</tr>
<tr>
<td>Diomedea amsterdamsrens</td>
<td>CR</td>
</tr>
<tr>
<td>Diomedea ephomophora</td>
<td>VU</td>
</tr>
<tr>
<td>Diomedea sanfordi</td>
<td>EN</td>
</tr>
<tr>
<td>Dipodomys insularis</td>
<td>CR</td>
</tr>
<tr>
<td>Dipodomys stephani</td>
<td>EN</td>
</tr>
<tr>
<td>Ducula pickeringii</td>
<td>VU</td>
</tr>
<tr>
<td>Dysmoropelia dekarchiskos</td>
<td>EX</td>
</tr>
<tr>
<td>Elanus scriptus</td>
<td>NT</td>
</tr>
<tr>
<td>Eleutherodactylus martiniensis</td>
<td>NT</td>
</tr>
<tr>
<td>Ellurus myoxinus</td>
<td>LC</td>
</tr>
<tr>
<td>Emberiza socotrina</td>
<td>VU</td>
</tr>
</tbody>
</table>

Emoia adspersa EN
Emoia loyalliensis VU
Epicrates monensis EN
Eremiornis carteri LC
Euastacus armatus DD
Euastacus balanensis EN
Euastacus bindal CR
Euastacus brachythorax EN
Euastacus claytoni EN
Euastacus dalaqarbe CR
Euastacus diversus EN
Euastacus fleckeri EN
Euastacus girumulayn CR
Euastacus guruhgi CR
Euastacus hirsutus EN
Euastacus jagabar CR
Euastacus maccai EN
Euastacus mirangudjin CR
Euastacus pilosus EN
Euastacus rieki EN
Euastacus setosus CR
Euastacus spinichelatus EN
Euastacus suttoni VU
Euastacus valentulus LC
Euastacus yanga LC
Euastacus yigara CR
Eudyptes pachyrhynchus VU
Euleptes europaea NT
Eurydactylodes agricolae NT
Eurydactylodes symmetricus EN
Falco araea VU
Felix margarita NT
Fossa fossana NT
Foudia sechellarum NT
Fulica alai VU
Galidia elegans LC
Gallicolumba erythroptera CR
Gallicolumba norfolciensis EX
Gallicolumba salamonis EX
Gallnula nesiotis VU
Gallirallus australis VU
Gallirallus dieffenbachii EX
Gallirallus okinawae EN
Gallirallus pacificus EX
Gallirallus sylvestris EN
Gallotia bravoana CR
Gallotia simonyi CR
Emoia lawesi EN
Emoia nigra LC
Epthianura tricolor LC
Eretmochelys imbricata CR
Euastacus australasiensis LC
Euastacus bidawalis EN
Euastacus bispinosus VU
Euastacus clarkae CR
Euastacus crassus EN
Euastacus dharawalensis CR
Euastacus eungella CR
Euastacus gamilaroi CR
Euastacus gumar EN
Euastacus guwinus CR
Euastacus hystericosus EN
Euastacus jagara CR
Euastacus maidae CR
Euastacus montelhorum CR
Euastacus polystosus EN
Euastacus robertsi CR
Euastacus simplex VU
Euastacus sulcatus VU
Euastacus urospinusus EN
Euastacus wiwuru NT
Euastacus yarreensis VU
Eudyptes chrysocome VU
Eudyptula minor LC
Eupleres goudoti NT
Eurydactylodes occidentalis CR
Eurydactylodes vieillardi NT
Falco punctatus VU
Felis silvestris LC
Foudia flavicans VU
Fregata aquila VU
Fulica caribaea NT
Galictides fasciata NT
Gallicolumba kubaryi VU
Gallicolumba rubescens VU
Gallicolumba sanctaerucruciis EN
Gallicolumba pacifica CR
Gallirallus calayanensis VU
Gallirallus lafresnayanus CR
Gallirallus owstoni EW
Gallirallus philippensis LC
Gallotia auratae CR
Gallotia intermedia CR
Gallotia stehlini LC
<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Conservation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geocapromys ingrahami</td>
<td>VU</td>
</tr>
<tr>
<td>Geomaliva heinrichi</td>
<td>NT</td>
</tr>
<tr>
<td>Geoscincus haralmeieri</td>
<td>CR</td>
</tr>
<tr>
<td>Gerygone modesta</td>
<td>VU</td>
</tr>
<tr>
<td>Graciliscus chonae</td>
<td>VU</td>
</tr>
<tr>
<td>Haematopus chathamensis</td>
<td>EN</td>
</tr>
<tr>
<td>Heleioporus australiacus</td>
<td>VU</td>
</tr>
<tr>
<td>Hemignathus munroi</td>
<td>EN</td>
</tr>
<tr>
<td>Hemiphaqa novaeseelandiae</td>
<td>NT</td>
</tr>
<tr>
<td>Himantopus novaезelandiae</td>
<td>CR</td>
</tr>
<tr>
<td>Hypogeomyx antiena</td>
<td>EN</td>
</tr>
<tr>
<td>Icterus northropi</td>
<td>CR</td>
</tr>
<tr>
<td>Isodon auratus</td>
<td>VU</td>
</tr>
<tr>
<td>Kanakysaurus viviparus</td>
<td>EN</td>
</tr>
<tr>
<td>Lacertoides pardalis</td>
<td>VU</td>
</tr>
<tr>
<td>Lagorchestes conspicillatus</td>
<td>LC</td>
</tr>
<tr>
<td>Lagostrophus fasciatus</td>
<td>EN</td>
</tr>
<tr>
<td>Larosterna inca</td>
<td>NT</td>
</tr>
<tr>
<td>Larus fuliginosus</td>
<td>VU</td>
</tr>
<tr>
<td>Laterallus spilonotus</td>
<td>VU</td>
</tr>
<tr>
<td>Leporillus conditor</td>
<td>VU</td>
</tr>
<tr>
<td>Lewinia muelleri</td>
<td>VU</td>
</tr>
<tr>
<td>Lioscincus nigrofasciolatum</td>
<td>LC</td>
</tr>
<tr>
<td>Lioscincus steindachneri</td>
<td>EN</td>
</tr>
<tr>
<td>Lioscincus vivae</td>
<td>CR</td>
</tr>
<tr>
<td>Loxioderma baiilei</td>
<td>CR</td>
</tr>
<tr>
<td>Macroderma gigas</td>
<td>VU</td>
</tr>
<tr>
<td>Macrotrarsomsy ingens</td>
<td>EN</td>
</tr>
<tr>
<td>Macrotis leucura</td>
<td>EX</td>
</tr>
<tr>
<td>Marmorosaph boulinda</td>
<td>VU</td>
</tr>
<tr>
<td>Marmorosaph montana</td>
<td>VU</td>
</tr>
<tr>
<td>Marmorosaph tricolor</td>
<td>LC</td>
</tr>
<tr>
<td>Mayornis versicolor</td>
<td>VU</td>
</tr>
<tr>
<td>Megalurulus ilaneae</td>
<td>NT</td>
</tr>
<tr>
<td>Megalurulus whitneyi</td>
<td>NT</td>
</tr>
<tr>
<td>Megapodius laerouse</td>
<td>EN</td>
</tr>
<tr>
<td>Megapodius pritchardii</td>
<td>EN</td>
</tr>
<tr>
<td>Mergus australis</td>
<td>EX</td>
</tr>
<tr>
<td>Mesembriomyx macrurus</td>
<td>LC</td>
</tr>
<tr>
<td>Mimus graysoni</td>
<td>CR</td>
</tr>
<tr>
<td>Moho bishopi</td>
<td>EX</td>
</tr>
<tr>
<td>Myotis vivesi</td>
<td>VU</td>
</tr>
<tr>
<td>Myzomela chermesina</td>
<td>VU</td>
</tr>
<tr>
<td>Naultinus manukanus</td>
<td>DD</td>
</tr>
<tr>
<td>Neophema chrysogaster</td>
<td>CR</td>
</tr>
<tr>
<td>Neotoma bryanti</td>
<td>EN</td>
</tr>
<tr>
<td>Neotoma maritensis</td>
<td>EX</td>
</tr>
<tr>
<td>Neotoma thoracatus</td>
<td>EX</td>
</tr>
<tr>
<td>Geophaps smithii</td>
<td>NT</td>
</tr>
<tr>
<td>Geotrygon caniceps</td>
<td>VU</td>
</tr>
<tr>
<td>Goniurosaurus kuroiwaen</td>
<td>EN</td>
</tr>
<tr>
<td>Gymnomyza aubryana</td>
<td>CR</td>
</tr>
<tr>
<td>Haematopus meadewaldoi</td>
<td>EX</td>
</tr>
<tr>
<td>Hemignathus kauaiensis</td>
<td>VU</td>
</tr>
<tr>
<td>Hemignathus parvus</td>
<td>VU</td>
</tr>
<tr>
<td>Henicophaps foersteri</td>
<td>VU</td>
</tr>
<tr>
<td>Hydromys chrysogaster</td>
<td>LC</td>
</tr>
<tr>
<td>Hydropsyron don moschatus</td>
<td>LC</td>
</tr>
<tr>
<td>Iguana delicatissima</td>
<td>EN</td>
</tr>
<tr>
<td>Isoodon obesulus</td>
<td>LC</td>
</tr>
<tr>
<td>Kanakysaurus zebratus</td>
<td>EN</td>
</tr>
<tr>
<td>Lagorchestes asomatus</td>
<td>EX</td>
</tr>
<tr>
<td>Lagorchestes hirsutus</td>
<td>VU</td>
</tr>
<tr>
<td>Lampropeltis catalinensis</td>
<td>DD</td>
</tr>
<tr>
<td>Larus bulleri</td>
<td>EN</td>
</tr>
<tr>
<td>Larus hartlaubii</td>
<td>LC</td>
</tr>
<tr>
<td>Leporillus apicalis</td>
<td>CR</td>
</tr>
<tr>
<td>Leptotila wellsi</td>
<td>CR</td>
</tr>
<tr>
<td>Lioscincus maruia</td>
<td>EN</td>
</tr>
<tr>
<td>Lioscincus novaезaledonai</td>
<td>LC</td>
</tr>
<tr>
<td>Lioscincus tillieri</td>
<td>NT</td>
</tr>
<tr>
<td>Litoria caerulea</td>
<td>LC</td>
</tr>
<tr>
<td>Loxops coccineus</td>
<td>EEN</td>
</tr>
<tr>
<td>Macropus eugenii</td>
<td>LC</td>
</tr>
<tr>
<td>Macrotis lagotis</td>
<td>EX</td>
</tr>
<tr>
<td>Malurus leucopterus</td>
<td>LC</td>
</tr>
<tr>
<td>Marmorosaph kaala</td>
<td>CR</td>
</tr>
<tr>
<td>Marmorosaph taom</td>
<td>CR</td>
</tr>
<tr>
<td>Mastacomyx fuscus</td>
<td>NT</td>
</tr>
<tr>
<td>Megadyptes antipodes</td>
<td>EN</td>
</tr>
<tr>
<td>Megalurulus mariei</td>
<td>LC</td>
</tr>
<tr>
<td>Megapodius bernsteini</td>
<td>VU</td>
</tr>
<tr>
<td>Megapodius nicobariensis</td>
<td>VU</td>
</tr>
<tr>
<td>Melamprosops pheoosa</td>
<td>CR</td>
</tr>
<tr>
<td>Mesembriomyx gouldii</td>
<td>NT</td>
</tr>
<tr>
<td>Microgoura meeki</td>
<td>EX</td>
</tr>
<tr>
<td>Mimus melanotis</td>
<td>EN</td>
</tr>
<tr>
<td>Mundia elpenor</td>
<td>EX</td>
</tr>
<tr>
<td>Myrmecobius fasciatus</td>
<td>EN</td>
</tr>
<tr>
<td>Naultinus gemmeus</td>
<td>NT</td>
</tr>
<tr>
<td>Neodon sikimens</td>
<td>LC</td>
</tr>
<tr>
<td>Neotoma anthony</td>
<td>EX</td>
</tr>
<tr>
<td>Neotoma bunkeri</td>
<td>EX</td>
</tr>
<tr>
<td>Nesocleopus poecilopterus</td>
<td>EX</td>
</tr>
</tbody>
</table>
FULL ACCOUNT FOR: *Felis catus*

Psittirostra psittacea CR
Pterodroma armijoniana VU
Pterodroma axillaris EN
Pterodroma brevipes VU
Pterodroma cookii VU
Pterodroma externa VU
Pterodroma hasilata EN
Pterodroma longirostris VU
Pterodroma madeira EN
Pterodroma phaeopygia CR
Pterodroma sandwichensis VU
Pteropus melanotus VU
Ptilinopus huttoni VU
Ptychoramphus aleuticus LC
Puffinus creatopus VU
Puffinus heinrothi VU
Puffinus mauretanicus CR
Puffinus opisthomelas NT
Puffinus yelkouan NT
Rallina canningi NT
Rattus tunneyi LC
Reithrodontomys spectabilis CR
Rhacodactylus auriculatus LC
Rhacodactylus trachyrhynchos EN
Rhionaeschna galapagoensis EN
Sarothrura elegans LC
Scelarcis perspicillata LC
Scolopax celebensis NT
Sephanoides fernandensis CR
Sigaloseps deplanchei NT
Siphonorus brevipes CR
Sminthopsis bulbifera VU
Sminthopsis douglasi NT
Solenodon cubanis EN
Sorex pribilofensis EN
Spheniscus humboldti VU
Spheniscus mendiculus EN
Spercorius antarcticus LC
Spercorius pusillus LC
Strigops habroptila CR
Sula flagellum LC
Sylvilagus mansuetus NT
Sylvilagus craverti VU
Syrmaticus soemmerringii NT
Tarsius dentatus VU
Tarsius pelengensis EN
Terpsiphone corvina CR
Pterodroma alba EN
Pterodroma atra CR
Pterodroma barui EN
Pterodroma cervicalis VU
Pterodroma defilippiana VU
Pterodroma feae NT
Pterodroma leucoptera VU
Pterodroma macroptera LC
Pterodroma magentae CR
Pterodroma rupinorum EX
Pterodroma solandri VU
Pteropus psephalus CR
Ptilinopus mercaderi EX
Puffinus auricularis CR
Puffinus gravis LC
Puffinus huttoni EN
Puffinus newelli EN
Puffinus pacificus LC
Pyrhula murina EN
Rallus semiplumbeus EN
Reithrodontomys raviventris EN
Rhododactylus auriculatus LC
Rhododactylus sarasinorum VU
Rhinoptera oxyrhynchus LC
Rhynochetos jubatus EN
Saxicola dacotiae NT
Sciurus griseus LC
Scolopax mira VU
Setonix brachyurus VU
Sigaloseps ruficauda VU
Sminthopsis aitkeni CR
Sminthopsis dolichura LC
Spheniscus psammophila EN
Spheniscus demersus EN
Spheniscus magellanicus NT
Spilogale pygmaea VU
Sternbergei LC
Sternavirgifera NT
Tachysurus taeniaca VU
Tachyurus bachmiani LC
Tachyurus palustris LC
Synthliboramphus hypoleucus VU
Tamias palmeri EN
Tarsius lariang DD
Tarsius tarsier VU
Thalassarche melanophrys EN
FULL ACCOUNT FOR: **Felis catus**

Thalassarche steadi NT
Theba geminata DD
Thinornis rubricollis NT
Tokiramphus ruficolaris VU
Tokudaia osimensis EN
Toxostoma guttatum CR
Troglodytes cobbi VU
Tropidiscincus aubrianaus VU
Tropidiscincus variabilis LC
Turdus celaenops VU
Turnagra tanagra EX
Typhlops biminiensis NT
Upupa antaio EX
Vernivora crissalis NT
Vini kuhli EN
Xantusia riversiana LC
Xenosaurus platyceps EN
Zoothera guttata EN
Zoothera tauripavae VU
Zyomyz palatalis CR

Thamnophis gigas VU
Thinornis novaeseelandiae EN
Thomomys mazama LC
Tokudaia muenninki CR
Tokudaia tokunoshimensis EN
Traversia lyalli EX
Troglodytes tanneri VU
Tropidiscincus boreus LC
Tupaia nicobarica EN
Turdus herminieri VU
Turnix melanogaster VU
Tyto manu VU
Urosaurus auriculatus EN
Vestiaria coccinea VU
Vini peruviana VU
Xenicus longipes EX
Zenaida graysoni EW
Zoothera terrestris EX
Zosterops tenuirostris EN

BIBLIOGRAPHY

132 references found for *Felis catus*

Management information

Summary: Eradication case study in *Turning the tide: the eradication of invasive species*.

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors' experience with that of other workers.

Summary: This paper presents the results of a study into the prey composition for house cats *Felis catus* in Canberra, Australia. I. Prey composition and preference. *Wildlife Research*. 24 (3): 263-277.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: This paper looks at the effectiveness of the trap/neuter/release methods used to control domestic cat colonies in the USA.

Summary: This paper considers the problem of domestic cat populations in natural areas in the USA.

Summary: This paper looks at the effectiveness of the trap/neuter/release methods used to control domestic cat colonies in the USA.

Summary: This paper considers the problem of domestic cat populations in natural areas in the USA.

Summary: This paper considers the problem of domestic cat populations in natural areas in the USA.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: This paper discusses the interaction between wildcats and domestic cats in Scotland, and suggests management measures.

Eradication case study: Turning the tide: the eradication of invasive species.
The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e., those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e., are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e., are Near Threatened).
This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.
Summary: Eradication case study in Turning the tide: the eradication of invasive species.
Summary: Eradication case study in Turning the tide: the eradication of invasive species.
Summary: Eradication case study in Turning the tide: the eradication of invasive species.
Summary: A review of feral cat eradication programmes on islands.

Summary: Eradication case study In Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Available from: http://www.ead.ae/TacSoft/FileManager/Publications/reports/TERC/AD_mammals_RedDataList.0.5.pdf [Accessed 16 May 2006]

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: This paper examines the impact of predation by domestic cats on wildlife in Great Britain.

Summary: General information

Summary: This article discusses the spread of the cat throughout mainland Australia and the early impact on native fauna.

Summary: This study reports on the impacts of predators on the endangered Newell's shearwater on Kaua'i, Hawaii.

Summary: This short note discusses the diet and home range of feral cats on Dassen Island, South Africa.

Summary: This paper examines the impact of cat predation in an urban area (Bristol, UK).

Summary: This paper outlines the history of mammal introductions to Sao Tome and Principe.

Summary: This paper describes the pest management strategies which were undertaken at Trounson Kauri Park, New Zealand.

Summary: This paper examines the relationship between feral cats on Stewart Island and rats, their primary food source.

Summary: This study reports on the impacts of predator control on the population of the Hawaiian petrel.

Summary: This study reports on the factors which are contributing to the endangered status of the Hawaiian dark-rumped petrel on Mauna Loa, Hawaii.

ITIS (Integrated Taxonomic Information System), 2005. Online Database Felis catus

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper looks at the impacts feral cats are having on the seabird population of the Bonin Islands, Japan.

Summary: Description of various bird species impacted by a domestic cat on Hahajima Island, Bonin Islands (Japan).

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper looks at the impacts feral cats are having on the seabird population of the Bonin Islands, Japan.

Summary: Description of various bird species impacted by a domestic cat on Hahajima Island, Bonin Islands (Japan).

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper looks at the impacts feral cats are having on the seabird population of the Bonin Islands, Japan.

Summary: Description of various bird species impacted by a domestic cat on Hahajima Island, Bonin Islands (Japan).

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper looks at the impacts feral cats are having on the seabird population of the Bonin Islands, Japan.

Summary: Description of various bird species impacted by a domestic cat on Hahajima Island, Bonin Islands (Japan).

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper looks at the impacts feral cats are having on the seabird population of the Bonin Islands, Japan.

Summary: Description of various bird species impacted by a domestic cat on Hahajima Island, Bonin Islands (Japan).

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper looks at the impacts feral cats are having on the seabird population of the Bonin Islands, Japan.

Summary: Description of various bird species impacted by a domestic cat on Hahajima Island, Bonin Islands (Japan).

Summary: This paper looks at the diet and impacts of feral cats on native animals on Okinawa Island, Japan.

Summary: This paper discusses the ecology of the feral cat on Macquarie Island.

Summary: This paper describes the status of large mammals in Kenting National Park, Taiwan.
Summary: This paper examines the genetic relationship and degree of hybridisation between feral cats and wildcats in Europe.
Summary: The authors report on a study of the diet of feral cats on Grande Terre, Kerguelen Archipelago, in the French Southern Territories.
Summary: This paper examines the causes for mortality of wild and released grey partridges in Finland.
Summary: This paper discusses the distribution of introduced mammals in New Caledonia’s southern nature reserves.
Summary: This study looked at the causes of mortality for a range of ground-nesting birds in the Upper Waitaki Basin in New Zealand’s South Island.
Summary: This study provides estimates of the population size of cats on Kerguelen Island.
Summary: This study looked at the home range and diet of feral cats in Hawaiian forests.
Summary: This article discusses the diet of feral cats on Christmas Island, Indian Ocean.
Summary: This paper discusses the ecological effects of cat predation on the Balearic Islands.
Urtizberea, pers.comm., 2007
Summary: Personal communication with Frank Urtizberea, from the Direction de l Agriculture et de la Forêt.

Summary: This paper reports on the release of the Aldabra rail on to Aldabra Atoll in the Seychelles.

Summary: This paper examines the relationship and potential for competition between feral cats and the Iriomote cat on Iriomote Island, Japan.

Watling, D., 2001. *A Survey Of The Terrestrial Vertebrate Fauna Of Nanuyalevu (Turtle Island), Yasawa, Ba*

Summary: This study looked at the impact of feral cat predation on a population of black redstarts in Switzerland.