Common name: Hausratte (German), European house rat (English), bush rat (English), blue rat (English), ship rat (English), roof rat (English), black rat (English)

Synonym: Mus ratus, Linnaeus, 1758
Mus alexandrinus, Geoffroy, 1803
Musculus frugivorus, Rafinesque, 1814
Mus novaezelandiae, Buller, 1870

Similar species: Rattus norvegicus

Summary: A native of the Indian sub-continent, the ship rat (Rattus rattus) has now spread throughout the world. It is widespread in forest and woodlands as well as being able to live in and around buildings. It will feed on and damage almost any edible thing. The ship rat is most frequently identified with catastrophic declines of birds on islands. It is very agile and often frequents tree tops searching for food and nesting there in bunches of leaves and twigs.

Species Description
A slender rat with large hairless ears, the ship rat (Rattus rattus) may be grey-brown on the back with either a similarly coloured or creamish-white belly, or it may be black all over. The uniformly-coloured tail is always longer than the head and body length combined. Its body weight is usually between 120 and 160 g but it can exceed 200 g.

The work of Yosida (1980) and his co-workers has shown that there are two forms of R. rattus that differ in chromosome number. The more widespread Oceanic form has 38 chromosomes and is the ship rat of Europe, the Mediterranean region, America, Australia and New Zealand. Present indications are that it is the Oceanic form that has reached islands in the South Pacific, but studies are needed to confirm this. The Asian form has probably reached some islands north of the equator, e.g. the Caroline Islands. On the basis of colour variation in rats on Ponape and Koror Islands, described by Johnson (1962) as Rattus rattus mansorius, we suspect that these rats may be the Asian form of R. rattus (SPREP, 2000).
Notes
Ship rats can be widespread, utilising most habitat types, but they show a preference for drier habitats. They generally avoid swimming.

Lifecycle Stages
Rattus rattus: gestation 20-22 days; weaning 21-28 days; sexual maturity 3-4 months; total life may not exceed two years.

Habitat Description
Ship rats can be widespread, utilising most habitat types, but they show a preference for drier habitats. They generally avoid swimming. Ship rats in a New Zealand study (Hooker and Innes, 1995; in Innes, 2001) were mostly arboreal, but were also frequently recorded on the ground. The mean range length for females was 103m, and 194m for males. Another study (Dowding and Murphy, 1994; in Innes, 2001) found that rats generally used 3-4 dens each throughout their range. In the Mediterranean region *R. rattus* is most common in forests and shrublands up to 1080m in elevation (Martin *et al*., 2000).

Reproduction
A placental mammal with dependent young. Litter size 3-10 (average 5-8), with frequency of litters dependent on season and food supply. The interval between litters may be as little as 27 days.

Nutrition
Ship rats are omnivorous generalists, yet can be very selective feeders. They eat both plant and animal matter all year round.
A Japanese study showed that *R. rattus* is primarily herbivorous, but can change its food habits when it is thirsty, or when food is in short supply (Yabe, 2004).
General Impacts
The ship rat has directly caused or contributed to the extinction of many species of wildlife including birds, small mammals, reptiles, invertebrates, and plants, especially on islands. Ship rats are omnivorous and capable of eating a wide range of plant and animal foods. These include native snails, beetles, spiders, moths, stick insects and cicadas and the fruit of many different plants (Innes 1990). They also prey on the eggs and young of forest birds (Innes et al., 1999). In the recovery programme for the endangered Rarotonga flycatcher or kakerori (see Pomarea dimidiata in the IUCN Red List of Threatened Species), Robertson et al. (1994) identified ship rats as the most important predator affecting the breeding success of this bird. Several cases are known where predation on seabirds can be reliably attributed to ship rats. These include sooty terns (see Sterna fuscata in IUCN Red List of Threatened Species) in the Seychelles Islands (Feare, 1979), Bonin petrels (see Pterodroma hypoleuca in IUCN Red List of Threatened Species) in Hawai‘i (Grant et al., 1981), Galapagos dark-rumped petrels (see Pterodroma phaeopygia in IUCN Red List of Threatened Species) in the Galapagos Islands (Harris, 1970), and white-tailed tropicbirds (see Phaethon lepturus in IUCN Red List of Threatened Species) in Bermuda (Gross, 1912).

The ship rat is most frequently identified with catastrophic declines of birds on islands. The best documented examples in the Pacific region are Midway Island in the Leeward Islands of Hawai‘i (Johnson, 1945; Fisher and Baldwin, 1946), Lord Howe Island (Hindwood, 1940; Recher and Clark, 1974) and Big South Cape Island, New Zealand (Atkinson and Bell, 1973). Atkinson (1977) brought together circumstantial evidence suggesting that ship rats, rather than disease, were responsible for the decline of many species of Hawai‘ian native birds during the 19th century. There are few indications of rat-induced declines in native birds on islands nearer the equator (latitude 15°N to 20°S). This zone coincides with the distribution of native land crabs, animals that also prey on birds and their eggs. The long co-existence between land crabs and some island birds may have resulted in the development of behaviours among the birds that gives them a degree of protection against rats. Atkinson (1985) suggested that this might be the reason why rat-induced catastrophes are less apparent within the equatorial zone, but this hypothesis has never been tested (SPREP, 2000).

Species of weight similar to or smaller than that of rats appear to be the most vulnerable to predation. Impacts also appear to be more severe on smaller islands, where rat densities tend to be higher and do not fluctuate. Constant predation pressure results in a reduction in colony size on these islands (Martin et al., 2000).

Both R. rattus and R. norvegicus transmit the plague bacterium (Yersinia pestis) via fleas in certain areas of the world. There have been a series of recent outbreaks in Madagascar in recent years (Boiser et al. 2002).
Management Info

Preventative measures: Research has shown that it can often be difficult to eradicate rats from islands in the early stages of invasion, hence it is better to prevent rodents arriving on islands in the first place. Eliminating a single invading rat can be disproportionately difficult because of atypical behaviour by the rat in the absence of conspecifics, and because bait can be less effective in the absence of competition for food (Russell et al., 2005). Weihong et al. (1999) provide useful information regarding the detection of rodent species using different trapping methods and bait.

Physical: The use of poison baits is the only proven way to remove rodents from large islands. Trapping generally fails to remove all individuals, as trap-shy animals can survive and repopulate the island (DOC, 2004).

Chemical: *Rattus rattus* can be eradicated from small areas or seasonally controlled using proprietary rat poison products in an appropriate manner. The largest island to date from which ship rats have been eradicated is Barrow Island (23 000 ha, Western Australia) (Morris, 2002). Second-generation anticoagulant poisons are used widely for ship rat control, but possible consequences of any ongoing control should always be considered. These consequences include primary or secondary poisoning of species we are aiming to protect or other non-target species, secondary poisoning of other vertebrate pests such as cats, and development of resistance to these poisons by ship rats. It is not known whether their tree-climbing habits will make eradication more difficult (SPREP, 2000).

Fisher et al. (2004) suggest that diphacinone especially, and also coumatetralyl and warfarin, should be evaluated in field studies as alternative rodenticides in New Zealand. Brodifacoum, the most widely used rodenticide in New Zealand currently, can acquire persistent residues in non-target wildlife. Mineau et al. (2004) presented a risk assessment of second generation rodenticides at the 2nd National Invasive Rodent Summit. O’Connor and Eason (2000) discusses the variety of baits which are available for use on offshore islands in New Zealand.

An investigation Spurr et al. (2007) was carried out to assess the behavioural response of ship rats to four different bait station types. Yellow plastic pipe, wooden box (‘rat motel’), and wooden tunnel bait stations were found all suitable for surveillance of ship rats and the first two at least for Norway rats (all were readily entered and had a similar amount of bait eaten from them).

Biological: Contraceptive methods of control are currently experimental, but the potential for effective control using contraceptive methods is promising. National Wildlife Research Center (USA) scientists are working on several possible formulations that may make effective oral immunisation possible (Nash and Miller, 2004).

Integrated management: Guidelines for the Eradication of Rats From Islands Within the Falklands Group offers guidelines for the eradication of rats from islands, based on the experiences in eradicating rats from the Falklands group. This paper offers guidelines for the eradication of rats from islands, based on the experiences in eradicating rats from the Falklands group.

Pathway

Rattus rattus usually stow away in freight carried within the hull, holds and living spaces of ships.

Principal source:
FULL ACCOUNT FOR: Rattus rattus

Compiler: IUCN SSC Invasive Species Specialist Group

Review: Dick Veitch, Auckland, New Zealand.

Publication date: 2011-01-11

ALIEN RANGE

[1] UNITED KINGDOM [19] UNITED STATES
[2] WALLIS AND FUTUNA

Red List assessed species 222: EX = 21; EW = 1; CR = 43; EN = 53; VU = 57; NT = 24; DD = 4; LC = 19;
GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: Rattus rattus

Acomys nesiotes DD
Acrocephalus caffer EN
Acrocephalus rimatarae VU
Acrocephalus taiti VU
Afroablepharus africana VU
Alectryon macrococcus CR
Amaurocicla bocagei VU
Aphrastura masafuerae CR
Aplonis fusca EX
Atlantisia rogersi VU
Branta sandvicensis VU
Callaeas cinereus CR
Camarhynchus pauper CR
Chernospyna amabilis CR
Chelonia mydas EN
Columba bollii LC
Columba trocaz LC
Coracina typica VU
Cyanolimnas cerverai CR
Cyanorhynchus cookii EN
Dendrocygna arborea VU
Ducula australis EN
Eleutherodactylus orcucci CR
Epicrates monensis EN
Eudyptes schlegeli VU
Eunymphicus cornutus VU
Falco eleonorae LC
Femina cerverai EN
Foudia rubra EN
Fregata aquila VU
Gallicolumba erythroptera CR
Gallinula nesiotis VU
Gerygone modestia VU
Haematopus chathamensis EN
Hemiphaga novaeseelandiae NT
Hydropsytes olivaceus VU
Lanius newtoni CR
Larus audouinii NT
Larus fuliginosus VU
Leiopterygia hochstetteri VU
Leptodactylus fallax CR
Megaturus mariae LC
Melamprosops phaeosoma CR
Mesembriomys macrurus LC
Mesocapromys auritus EN
Mesocapromys santelipensis CR
Mimus melanotis EN
Acrocephalus aequinoctialis EN
Acrocephalus kerearako NT
Acrocephalus rudericanus EN
Aegialomys galapagoensis VU
Alectroenas ruderiana EX
Alsophis antiquae CR
Anisomys imitator LC
Aplonis cinerascens VU
Aplonis pelzelni CR
Bostrychia bocagei CR
Bulweria bulwerii LC
Camarhynchus heliobates CR
Cettia haddeni NT
Chasiempis ibidis EN
Clytorhynchos sanctaeccrutus EN
Columba junoniae NT
Coracina newtoni CR
Corvus hawaiiensis EW
Cyanoramphus auriceps NT
Cyanoramphus saisseti VU
Ducula australis EN
Eleutherodactylus cookii VU
Emberiza socotrina VU
Eretmochelys imbricata CR
Eumeces longirostris CR
Eunymphicus uvaensis EN
Falco pectoralis VU
Foudia flavicans VU
Foudia sechellarum NT
Fulica alai VU
Gallicolumba cubariai VU
Gerygone insularis EX
Gymnuromys roberti LC
Haematopus meadowlark EX
Hydromys chrysogaster LC
Isodon auratus VU
Lariscus obscursus NT
Larus cachinnans LC
Leiopterygia hamiltoni EN
Leiopterygia pakea VU
Loxioides bailleui CR
Megapodius lapereouu EN
Melomys fraterculus CR
Mesocapromys anglicabrerai EN
Mesocapromys nanus CR
Mimus macdonaldi VU
Mimus trifasciatus CR

Moho bishopi | EX
Mohoua ochrocephala | EN
Myadestes palmeri | CR
Mystacina robusta | CR
Neospiza concolor | CR
Nesofregetta fuliginosa | EN
Nesoryzomys darwini | EX
Nesoryzomys indefessus | EX
Nesoryzomys swarthi | VU
Notiomystis cincta | VU
Oligoryzomys victus | EX
Oreomytis bairdi | CR
Oryzomys gorgasi | EN
Otus capnoides | CR
Pachycephala jacquinoti | NT
Palmeria dolei | CR
Phalacrocorax aristotelis | LC
Phalacrocorax harrisi | VU
Phoboscincus bocourtii | EN
Phoebsatria irrorata | CR
Pomarea dimidiata | EN
Pomarea iphis | VU
Pomarea nigra | CR
Pomarea whitneyi | CR
Porzana palmeri | EX
Procellaria cinerea | NT
Procellaria parkinsoni | VU
Progne modesta | VU
Pseudobulweria rostrata | NT
Ptiliogonota psittacea | CR
Pterodroma cauhii | VU
Pterodroma hasitata | EN
Pterodroma inexpectata | NT
Pterodroma madeira | EN
Pterodroma phaeopygia | CR
Pterodroma solandri | VU
Ptilinopus coraensis | NT
Ptilinopus rarotongensis | VU
Puffinus bulleri | VU
Puffinus mauretanicus | CR
Puffinus pacificus | LC
Rallus longirostris | LC
Rattus bontanus | DD
Rattus enganus | DD
Rattus hainali | EN
Rattus lugens | EN
Rattus nativitatis | EX

Moho braccatus | EX
Mundia elpenor | EX
Mysateles meridionalis | CR
Myzomela chermesina | VU
Nesocichia eremita | NT
Nesomyidae | CR
Nesoryzomys nesoria | VU
Nestor meridionalis | EN
Oceanodroma homochroa | EN
Oligosoma acrinasum | NT
Oreomytis manu | EN
Oryzomys nelsoni | EX
Otus insularis | EN
Pachyptila vittata | LC
Peromyscus madrensis | EN
Phalacrocorax notatus | EN
Phoebea albatrus | VU
Phoebea fusca | EN
Pomarea flava | EX
Pomarea miris | EX
Pomarea nukuhivae | EX
Porzana atra | VU
Procellaria aequinoctialis | VU
Procellaria conspicillata | EN
Procellaria westlandica | VU
Prosobonia cancellata | EN
Psittacula eques | EN
Pterodroma albatros | EN
Pterodroma cookii | VU
Pterodroma hypoleuca | LC
Pterodroma leucoptera | VU
Pterodroma magentae | CR
Pterodroma sandwichensis | VU
Ptilinopus chalcirius | VU
Ptilinopus insularis | VU
Puffinus auricularis | CR
Puffinus griseus | NT
Puffinus newelli | EN
Puffinus yelkouan | NT
Rattus adustus | DD
Rattus elaphinus | NT
Rattus feliceus | NT
Rattus jobiensis | NT
Rattus macleari | EX
Rattus simalurensis | EN
FULL ACCOUNT FOR: Rattus rattus

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rattus tunneyi</td>
<td>LC</td>
</tr>
<tr>
<td>Rowettia goughensis</td>
<td>CR</td>
</tr>
<tr>
<td>Saxicola dacotiae</td>
<td>NT</td>
</tr>
<tr>
<td>Spheniscus mendiculus</td>
<td>EN</td>
</tr>
<tr>
<td>Sterna hirundo</td>
<td>LC</td>
</tr>
<tr>
<td>Synthliboramphus craveri</td>
<td>VU</td>
</tr>
<tr>
<td>Synthliboramphus wumizusumae</td>
<td>VU</td>
</tr>
<tr>
<td>Todiramphus gambieri</td>
<td>CR</td>
</tr>
<tr>
<td>Todiramphus ruficollaris</td>
<td>VU</td>
</tr>
<tr>
<td>Trichocichla rufa</td>
<td>EN</td>
</tr>
<tr>
<td>Turnagra capensis</td>
<td>EX</td>
</tr>
<tr>
<td>Vini kuhlii</td>
<td>EN</td>
</tr>
<tr>
<td>Vini ultramarina</td>
<td>EN</td>
</tr>
<tr>
<td>Xerocgrassa caroli</td>
<td>LC</td>
</tr>
<tr>
<td>Zosterops chloronotus</td>
<td>CR</td>
</tr>
<tr>
<td>Zosterops strenuus</td>
<td>EX</td>
</tr>
</tbody>
</table>

Rhynochetos jubatus | EN |
Sabal bermudana | EN |
Spheniscus humboldti | VU |
Sterna dougali | LC |
Sylvilagus graysoni | EN |
Synthliboramphus hypoleucus | VU |
Terpsiphone corvina | CR |
Todiramphus godeffroyi | CR |
Tokudaia osimensis | EN |
Troglodytes coffe | VU |
Turnagra tanagra | EX |
Vini peruviana | VU |
Xenicus longipes | EX |
Xerocrrassa ebusitana | NT |
Zosterops alboangularis | CR |
Zosterops modestus | EN |
Zosterops tenuirostris | EN |

BIBLIOGRAPHY

103 references found for *Rattus rattus*

Management information

Amaral, João, Sérgio Almeida, Maria Sequeira & Verônica Neves, 2010. Black rat: *Rattus rattus* eradication by trapping allows recovery of breeding roseate tern *Sterna dougali* and common tern *S. hirundo* populations on Feno Islet, the Azores, Portugal. *Conservation Evidence (2010) 7*, 16-20

Summary: [ARCP Rat Eradication Programme - Protection of Cleared Islands: Report on Green Island Emergency and Recommendations for Future Action](http://www.azoresbioportal.angra.uac.pt/files/noticias_Amaral%20et%20al_ratos.pdf)

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be “significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors’ experience with that of other workers.

BirdLife International January 17 2007. News: Islet inhabitants benefit from rat removal

Summary: The association between capture success of stoats (*Mustela erminea*) and ship rat (*Rattus rattus*) and landscape-scale environmental predictors was explored using trapping data from three stoat control areas located in podocarp/broadleaved forest in New Zealand. Stoat capture success was higher at trap sites where a rat was also captured at the same trap or a stoat was captured at a neighbouring trap. Drier trap sites with good soil drainage and increased proximity to the operational trapping boundary were also associated with increased stoat capture. Rat capture success was higher at trap sites where a rat had been captured at a neighbouring trap, and at trap sites that were on steeper ground, more easterly facing and within forest habitat. Trap sites with generally poor soil conditions, i.e. sites with lower soil calcium levels and wetter sites with poor drainage, and increasing distance from the forest edge were also associated with increased rat capture. There were highly variable relationships between rat and stoat capture and landscape-scale environmental predictors between the three stoat control areas. This could be due to differing topography, but also to the highly correlated nature of many of the topographic, climate and habitat predictors. Further research specifically designed to separate these effects should focus on the variables identified as common between all stoat control areas in this study. Additional investigations of whether rats captured in double trap sets act as additional bait for stoats would have practical benefits for stoat control areas. The variability of the results emphasises the importance of ensuring that traps are abundant and widespread in stoat control operations.

Summary: Abstract: The association between capture success of stoats (*Mustela erminea*) and ship rats (*Rattus rattus*) and landscape-scale environmental predictors was explored using trapping data from three stoat control areas located in podocarp/broadleaved forest in New Zealand. Stoat capture success was higher at trap sites where a rat was also captured at the same trap or a stoat was captured at a neighbouring trap. Drier trap sites with good soil drainage and increased proximity to the operational trapping boundary were also associated with increased stoat capture. Rat capture success was higher at trap sites where a rat had been captured at a neighbouring trap, and at trap sites that were on steeper ground, more easterly facing and within forest habitat. Trap sites with generally poor soil conditions, i.e. sites with lower soil calcium levels and wetter sites with poor drainage, and increasing distance from the forest edge were also associated with increased rat capture. There were highly variable relationships between rat and stoat capture and landscape-scale environmental predictors between the three stoat control areas. This could be due to differing topography, but also to the highly correlated nature of many of the topographic, climate and habitat predictors. Further research specifically designed to separate these effects should focus on the variables identified as common between all stoat control areas in this study. Additional investigations of whether rats captured in double trap sets act as additional bait for stoats would have practical benefits for stoat control areas. The variability of the results emphasises the importance of ensuring that traps are abundant and widespread in stoat control operations.

IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4
Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

IUCN South-Eastern Europe e-Bulletin December 2006. Issue 11: Rats exterminated in important colony of Eleonora’s falcon
Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

IUCN/SSC Invasive Species Specialist Group (ISSG), 2010. A Compilation of Information Sources for Conservation Managers
Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

?New Zealand Ecological Society

Summary: French language. Information about impacts, eradication methodology, results and discussion in French.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Marine Turtle Newsletter No. 106, 2004
Summary: Describes the rat eradication on Sangalaki Is. as part of a green turtle (Chelonia mydas) conservation programme.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Rattus rattus

Summary: Eradication case study In Turning the tide: the eradication of invasive species.

Summary: Eradication case study In Turning the tide: the eradication of invasive species.

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

General information

Summary: English: The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page (http://www.conabio.gob.mx/invasoras/index.php/Portada), under the section Novedades for information on updates.

Spanish:
La lista de especies del Sistema de informaci?n sobre especies invasoras de m?xico cuenta actualmente con informaci?n acerca de nombre cient?fico, familia, grupo y nombre com?, as? como h?bil, estado de la invasi?n en M?xico, rutas de introducci?n y ligas a otros sitios especializados. Algunas de las especies de mayor riesgo ya tienen una lista directa a la p?gina de alertas. Es importante resaltar que estas listas se encuentran en constante proceso de actualizaci?n, por lo que se recomienda consultar las portadas (http://www.conabio.gob.mx/invasoras/index.php/Portada), en la secci?n novedades, para conocer los cambios.

Summary: Synth?se g?n?rale sur la faune terrestre de Mayotte
Meier, Guntram., 2004. New sightings of a small island specialist

Summary: Bilan des introductions des mammif?res terrestres dans les Antilles françaises et analyse de leurs impacts.

Summary: Abstract: The breeding population of the Bonin Petrel (Pterodroma hypoophora) on Midway Atoll has declined dramatically since the accidental introduction of the black rat (Rattus rattus). During 1993 and 1994, we examined the effects of rat predation on Bonin Petrel reproductive success by monitoring nesting petrels in six study sites, three of which were treated with rodenticide (treatment) and three that were not (control). Results indicate that the incubation stage of the petrels nesting cycle is most vulnerable to rat predation. Both unattended and incubated eggs were attacked by rats. Rat predation was not observed on petrel chicks in study nests. However, incidental observations of chick remains outside of burrows suggest that rat predation on chicks may occur, but at a low frequency. Sites with low burrow density suffered more from rat predation than sites with higher burrow density. The rodenticide Vengeance trademark appeared to successfully suppress the rat numbers in treated sites. The number of nests that failed due to rat predation was significantly lower in two of the three treatment sites when compared with their paired control sites. In addition, the indications of rat activity were lower at these two treatment sites than at the paired control sites. Therefore, this study provides some evidence that rodenticide application is successful in reducing the number of rats, which in turn reduces the amount of rat predation and is associated with an increase in the reproductive success of Bonin Petrels.
