Species Description

The Pacific rat (*Rattus exulans*) is the smallest of the three rats (*Rattus rattus*, *R. norvegicus* and *R. exulans*) closely associated with humans. *R. exulans* has a slender body, pointed snout, large ears, and relatively small, delicate feet. A ruddy brown back contrasts with a whitish belly. Mature individuals are 4.5 to 6 inches long (11.5 to 15.0 cm) from the tip of the nose to the base of the tail and weigh 1.5 to 3 ounces (40 to 80 g). The tail has prominent fine scaly rings and is about the same length as the head and body. Female *R. exulans* have 8 nipples, compared to 10 and 12 nipples normally found on *R. rattus* and *R. norvegicus*, respectively (Tobin 1994). Morphology (skull size) of *R. exulans* has been shown to vary with latitude (Bergman's rule: geographic races of species with smaller body size are found in warmer parts and larger body size in colder parts of the species range) and island size. This effect is most pronounced in the tropics (Atkinson and Towns 2001).

A useful feature distinguishing them from other rats is the dark outer edge of the upper side of the hind foot near the ankle, the remainder of the foot being pale.
Notes
The larger species of *Rattus rattus* and *Rattus norvegicus* are known to displace the Pacific rat (*Rattus exulans*) from its environmental niche (Spennemann, 1997). The Polynesian rat is thought to have originated from the Malayan region, and to have been deliberately introduced to many islands by Polynesians who considered it a valuable food source (Spennemann, 1997).

Lifecycle Stages
In New Zealand: Gestation 19-21 days. Weaning 2-4 weeks. Sexual maturity 8-12 months, though maturity can be achieved during the same season as birth (Atkinson and Moller 1990). In captivity: Gestation minimum 23 days. Weaning 2-3 weeks. Sexual maturity 60-70 days (Tobin 1994). Total life is estimated between 12 - 15 months. Pacific rats have been observed to mature earlier and survive better, with some adults surviving to a second breeding season, where high quality food and year-round shelter were available (Atkinson and Towns, 2001). Strong seasonal fluctuations occur in the density of kiore populations on New Zealand’s northern offshore islands. Breeding is restricted to spring and summer, so densities reach a peak in autumn, then decline to low levels in spring (Campbell et al., 1984).

Habitat Description
Pacific rats can live in a wide range of habitats including grassland, scrub and forest, however they do require adequate food supplies and shelter (especially in temperate latitudes). They are able to climb trees easily where at least some of their feeding is done, but are not good swimmers. Snap trap success results have shown annual cycles in the abundance of *R. exulans* on Tiritiri Island in New Zealand. *R. exulans* are predominantly nocturnal, but become active just before dark during times of high density. Husking stations have been found amongst tree roots, within wide fissures in tree trunks at ground level, amongst rock piles, under the enlarged bases of fronds shed from nikau palms, and occasionally up trees – all characteristically dry places (Campbell et al., 1984). *Rattus exulans* is considered to be a fairly sedentary animal with a limited home range (Spennemann, 1997).

Reproduction
Placental, sexual. Females are polyestrous and ovulate spontaneously. Breeding largely determined by food availability. Litter size normally 6 - 11, gestation is 21-24 days, young weaned at about 28 days. Females can be sexually active in the season of their birth, and can have up to six litters a year (Wittenberg, R. (ed.) 2005). In New Zealand, the Norway rat has been observed breeding throughout the year (Innes, 2001).
Nutrition
The Pacific rat eats a wide range of foods including earthworms, centipedes, larvae of some butterflies and moths, ants, beetles, weevils, cicadas, snails, spiders, lizards and birds. They also eat fleshy fruit and other seeds, flowers, stems, leaves, roots and other plant parts. Campbell et al. (1984) found that Pacific rats feed on: invertebrates (eg. ants, wetas, moths - eggs, larvae and pupae but especially large insects over 12mm in length), amphipods, and chicks, and plant material such as seeds, leaves, shoots, bark, flowers and roots. They will strip bark and eat plant stems, particularly in winter. Pacific rats may not consume all edible parts of fruits in one sitting. They eat a wide range of plant and animal items of varying sizes and stages of development, living in habitats ranging from treetops to underground. A study on Lady Alice Island, New Zealand, (Newman and McFadden, 1990) found that Pacific rats eat 78% plant material together with a wide range of animal food, including weevils, scarab beetles, moth larvae, weta, seabird chicks and skinks (Atkinson and Towns, 2001). Pacific rats have been observed to carry food to “husking stations” to feed, where they are sheltered from predators, competitors and rain (Campbell et al., 1984).

General Impacts
Atkinson and Towns (2001) report numerous species of New Zealand flora and fauna that are vulnerable to Pacific rats (Rattus exulans). Most vulnerable amongst invertebrates are large, flightless species; especially those that need to descend to ground level for part of their life-cycle. Lizard populations have also been shown to increase following the removal of Rattus exulans. In Hawai‘i and New Zealand there are examples of detrimental effects on both burrowing petrels and on red-tailed tropicbirds. In the Leeward Islands of Hawai‘i, it has been shown that predation on seabirds only becomes significant after storms have reduced the fruiting of food plants. Fatal attacks by R. exulans on adult Laysan albatrosses appear likely to be associated with the same factor. R. exulans is also known to browse native flora (including trees, shrubs, fungi, sedges, grasses, orchids and other herbaceous plants and lianes), although the magnitude of such effects has been difficult to determine (Atkinson and Atkinson, 2000).

R. exulans is a major agricultural pest throughout Southeast Asia and the Pacific region. Crops damaged by this species include rice, maize, sugarcane, coconut, cacao, pineapple, and root crops.
Management Info

Preventative measures: Research has shown that it can often be difficult to eradicate rats from islands in the early stages of invasion, hence it is better to prevent rodents arriving on islands in the first place. Eliminating a single invading rat can be disproportionately difficult because of atypical behaviour by the rat in the absence of conspecifics, and because bait can be less effective in the absence of competition for food (Russell et al. 2005, Weihong et al. 1999) provide useful information regarding the detection of rodent species using different trapping methods and bait, Dilks and Towns (2002) published by New Zealand’s Department of Conservation discusses how to detect and respond to rodent invasions on islands.

Physical: Control on mainland sites predominantly consists of snap-trapping. Chemical: Over the last fifteen years, Pacific rats (Rattus exulans) have been eradicated from increasingly larger New Zealand offshore islands. To date, the largest eradication has been from Raoul Island (2938 ha), although confirmation of eradication from the larger Little Barrier Island (3083 ha) is due this year. Eradication of R. exulans populations on islands is achieved using chemical poisons. In New Zealand compound 1080 has not proved effective against R. exulans, but they are susceptible to anticoagulant poisons such as brodifacoum and bromadiolone. Recent successful eradication campaigns have all sown Talon 20 P baits aerially by helicopter. Talon 20 P is a cereal-based (pollard) pellet of approximately 0.8 g containing the anticoagulant toxin brodifacoum at 20 ppm. Currently this is applied at 15kg/ha at a cost of ~$75US/ha (Atkinson and Towns 2001).

Fisher et al. (2004) suggest that diphacinone especially, and also coumatetralyl and warfarin, should be evaluated in field studies as alternative rodenticides in New Zealand. Brodifacoum, the most widely used rodenticide in New Zealand currently, can acquire persistent residues in non-target wildlife. Mineau et al. (2004) presented a risk assessment of second generation rodenticides at the 2nd National Invasive Rodent Summit. O’Connor and Eason (2000) discusses the variety of baits which are available for use on offshore islands in New Zealand.

Biological: Monitor lizards and mongooses were introduced to Pacific islands in early attempts to control R. exulans.

Contraceptive methods of control are currently experimental, but the potential for effective control using contraceptive methods is promising. National Wildlife Research Center (USA) scientists are working on several possible formulations that may make effective oral immunisation possible (Nash and Miller, 2004).

Guidelines for the Eradication of Rats From Islands Within the Falklands Group offers guidelines for the eradication of rats from islands, based on the experiences in eradicating rats from the Falklands group.

Pathway

Rattus exulans is thought to have been deliberately introduced to many islands by Polynesians who considered it a valuable food source (Spennemann, 1997).

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment
Review:

Publication date: 2010-10-04

ALIEN RANGE

[19] FIJI [34] FRENCH POLYNESIA
[27] KIRIBATI [1] MALAYSIA
[33] MARSHALL ISLANDS [14] MICRONESIA, FEDERATED STATES OF
[68] NEW ZEALAND [1] NIUE
[3] WALLIS AND FUTUNA

Red List assessed species 54: EX = 3; EW = 1; CR = 11; EN = 12; VU = 17; NT = 8; LC = 2;

Acrocephalus kerearako NT
Acrocephalus taiti VU
Anas laysanensis CR
Branta sandvicensis VU
Corvus hawaiiensis EW
Cyanoramphus novaezelandiae VU
Gallicolumba erythroptera CR
Megalurus mariei LC
Mystacina robusta CR
Nesofregetta fuliginosa EN
Oceanites maorianus CR
Oreomyctes bairdi CR
Palmeria dolei CR
Phoebastria immutabilis NT
Platymantis vitianus EN
Pomarea mendozae EN
Pomarea nigra CR
Procellaria parkinsoni VU
Pseudobulweria macgillivrayi CR
Pterodroma atrata EN

Acrocephalus rimatarei VU
Acrocephalus vaughani EN
Apteryx oweni NT
Coenocorypha aucklandica NT
Cyanoramphus auriceps NT
Eunymphicus cornutus VU
Gallirallus australis VU
Melanprosops phaeosoma CR
Myzomela chermesina VU
Numenius tahitiensis VU
Oligosoma suteri LC
Pachycephala jacquiniti NT
Philesturnus carunculatus NT
Phoebastria nigripes EN
Pomarea fluxa EX
Pomarea mira EX
Porzana atra VU
Proisobonia cancellata EN
Pterodroma alba EN
Pterodroma cervicalis VU
GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Rattus exulans

Pterodroma cookii VU
Pterodroma magentae CR
Pterodroma sandwichensis VU
Ptinopus huttoni VU
Puffinus newelli EN
Sceloglaux albifacies EX
Vini kuhlii EN

Pterodroma incerta EN
Pterodroma pygmaea VU
Pterodroma ultima NT
Puffinus auricularis CR
Rattus simalurensis EN
Todiramphus ruficollaris VU
Vini stephensi VU

BIBLIOGRAPHY
65 references found for Rattus exulans

Management information

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors' experience with that of other workers.

Summary: This reference by Mike Brooke describes the total loss of all chicks of Kermedaece petrels on Henderson Island to Pacific rat predation.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is present at Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Available from: http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1056&context=vpc15 [Accessed 20 February 2008]

Pacific Invasives Initiative (PPI), 2006c. Aleipata Rat Eradication Project.

Pacific Invasives Initiative (PPI), 2006e. Restoration of Vahanga Atoll, French Polynesia.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Wittenberg, R. (ed.) 2005. An inventory of alien species and their threat to biodiversity and economy in Switzerland. CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape

ITIS (Integrated Taxonomic Information System), 2005. Online Database Rattus exulans

Pacific Biodiversity Information Forum (PBIF)., 2003. Pacific protected Areas Database: All Protected Areas: Leone Pala

Summary: Available from: http://www.pbif.org/PPADB/view2.asp [Accessed 19 February 2008]

Pacific Protected Areas Database, 2006. Pacific Biodiversity Information Forum (PBIF) Protected Area Information: America Samoa

Summary: The Pacific Protected Areas Database provides a list of known areas in the Pacific that have been designated as parks, conservations areas, or are managed for their biodiversity. The database includes descriptions, IUCN categories, and contact information for the managers of the areas. The database is available from: http://www.pbif.org/pa/index.html; this page is available from: http://www.pbif.org/pa/search.asp?search=american+samoa [Accessed 11 September 2006].

Robinet, O., JL, C., & Chardonnet, L. 1998. Impact of rat species in Ouvea and Lifou (Loyalty Islands) and their consequences to conserving the endangered Ouvea parakeet. Biological Conservation, 86, 223-232.

UNEP-WCMC (United Nations Environment Programme-World Conservation Monitoring Centre), 2006. Protected Areas and World Heritage Programme, Wetlands Leone Bay

