Alectoris chukar

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Aves</td>
<td>Galliformes</td>
<td>Phasianidae</td>
</tr>
</tbody>
</table>

Common name

iwashako (Japanese), chucor (English), coturnice orientale (Italian), perdrix choukar (French), chukar (English), chukarhuhn (German), orepice cukar (Czech), berghöna (Swedish), perdiz chucar (Spanish), vuoripy (Finnish), aziatische steenpatrijs (Dutch), perdiz-chukar (Portuguese), kuropta cukar (Slovak), chukor (English), Indian chukor (English), chukar partridge (English), chukor partridge (English), rock partridge (English), chukarhene (Danish), göröpatwa azjatycka (Polish), berghæna (Icelandic), berghøne (Norwegian)

Synonym

Alectoris kakelik
Tetrao kakelik

Similar species

Summary

Alectoris chukar has a wide distribution, stretching from the Aegean Sea through to Central and Eastern Asia. There does however seem to be two genetic clades within the species, those from the Mediterranean through to Central Asia and those from Eastern Asia. This is important as individuals used in the introduction into North America and Hawaii were from individuals from Eastern Asia; whereas individuals causing hybridization problems in Europe come from the Mediterranean and Central Asian clade. This hybridization is causing major problems to the genetic purity of the native _Alectoris rufa_ in the Iberian Peninsula, and strict measures in regards to potential hybridization, and the importation and introduction of farm-reared individuals needs to be introduced.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=1616)

Notes

Alectoris chukar has a wide distribution, stretching from the Aegean Sea through to Central and Eastern Asia (Barbanera et al, 2009b). There does however seem to be two genetic clades within the species, those from the Mediterranean through to Central Asia and those from Eastern Asia (Barbanera et al, 2009b). The Himalayas seem to represent some sort of barrier between the two. Naturally _A. chukar_ and _A. rufa_ distributions do not cross, however recently _A. chukar_ has been released for shooting alongside _A. rufa_ in the United Kingdom, France and Italy which has lead to hybridisation in the wild occurring between the two species (Barbanera et al 2005).
General Impacts
Alectoris chukar is causing genetic purity issues in *A. rufa*, a native to the Iberian Peninsula through hybridization (Blanco-Aguiar *et al.*, 2008).
Despite consuming large amounts of exotic plant material within the United States, *A. chukar* does not seem to spread these species through faecal distribution and thus may actually aid in their control (Larsen *et al.*, 2007).

Management Info
Biological: Due to hybridization that can occur easily between *Alectoris chukar* and other *Alectoris* species, identifying populations that are more genetically pure than others is essential for the management of *A. chukar*. This concept, mentioned by Allendorf & and Luikart (2007; as seen in Barbanera *et al.*, 2009a) was applied in a study by Barbanera *et al.*, (2009a), in which they surveyed populations within the Mediterranean. This process though is applicable world-wide. It now also seems that the genetic pollution caused by *A. chukar* is also occuring intra-specifically, as the two clades, one from the Mediterranean and Central Asia and the other from Eastern Asia, seem to be mixing with increased human movement (Barbanera *et al.*, 2009b).

Pathway
Alectoris chukar has been introduced to many areas of Europe to help restock levels of game-relatives such as *A. rufa* (Blanco-Aguiar *et al.*, 2008)

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group (ISSG) with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review:

Pubblcation date: 2010-06-08

ALIEN RANGE

| [1] UNITED KINGDOM | [9] UNITED STATES |

BIBLIOGRAPHY

20 references found for *Alectoris chukar*

Management information

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.
Alectoris chukar

Alectoris rufa

Available from:

A. graeca

) in Greece through Bayesian

, Galliformes) populations: conservation and management

) in the northern Great Basin. Great

population. Journal of Heredity. 98(2). MAR

) and their associated management: implications for a widely introduced phasianid. Wildlife Research.

genes into a Spanish wild

, Galliformes) genes from East Asia into native Mediterranean

Barilani, Marina; Bernard-Laurent, Ariane; Mucci, Nadia; Tabarroni, Cristiano; Kark, Salit; Perez Garrido, Jose Antonio; Randi, Ettore, 2007. Hybridisation with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations. Biological Conservation. 137(1). JUN 2007. 57-69.

Barilani, Marina; Slouf, Thanasios; Giannakopoulos, Alexis; Mucci, Nadia; Tabarroni, Cristiano; Randi, Ettore, 2007. Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conservation Genetics. 8(2). APR 2007. 343-354.

Olson, L. Storrs, 1975. Paleornithology of St. Helena Island, South Atlantic Ocean. Smithsonian Contributions to Paleobiology Number 23

