Rattus norvegicus

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Mammalia</td>
<td>Rodentia</td>
<td>Muridae</td>
</tr>
</tbody>
</table>

Common name
Rata de noruega (English, Dominican Republic), Wanderratte (German), Norway rat (English), brown rat (English), ratto grigio (Italian), surmolotto (Italian), rott (Finnish), isorotta (Finnish), rat surmolot (French), rata noruega (Spanish), water rat (English), tiku riui (English, Indonesia), common rat (English), sewer rat (English), pouhawai (Maori), ratto di fogn (Italian), topo delle fogne (Italian)

Synonym
Mus norvegicus, Berkenhout, 1769
Mus decumanus, Pallas, 1778
Mus hibernicus, Thompson, 1837
Epimys norvegicus, Miller, 1912

Similar species
Rattus rattus, Rattus exulans

Summary
The Norway rat (Rattus norvegicus) is globally widespread and costs primary industry hundreds of millions of dollars per year. It has caused or contributed to the extinction or range reduction of native mammals, birds, reptiles and invertebrates through predation and competition. It restricts the regeneration of many plant species by eating seeds and seedlings, eats food crops and spoils human food stores by urinating and defecating in them. Additional economic damage is caused by chewing through power cables and spreading diseases.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=159)

Species Description
The Norway rat has brown fur on the back with pale grey fur on its belly. The adults normally weigh 150 - 300g, and may reach up to 500g, and are up to 390mm long. They have relatively small ears - which usually do not cover the eyes when pulled forward. The tail is shorter than the head-body length - the opposite is true for the ship rat R. rattus (Wittenberg, R. (ed.) 2005). Females have 12 nipples.

Lifecycle Stages
On Fregate Island in the Seychelles, juvenile rats first ventured from the den when they were 30-50g in weight (Thorsen et al., 2000; Innes, 2001).
Habitat Description
Norway rats can be widespread, utilising most habitat types, but they appear to show a preference for wetland habitats. The home range of the Norway rat averaged 5.8ha for males and 5.1ha for females, according to the results from a small study on Kapiti Island off New Zealand (Bramley, 1999; in Innes, 2001). In the UK, male rats had a mean range length of 678m, with that of females being smaller (Macdonald et al., 1999; in Innes, 2001). In Europe, the Norway rat exists primarily in close relationship with humans, but there are also ‘wild’ populations along water edges. The Norway rat is considered to be territorial throughout most of the year, but they will spread when food is scarce, and migrations have been observed (Wittenberg, R. (ed.) 2005). Norway rats rarely climb trees. In the Galapagos Islands, they prefer to move along underground cracks and crevices in the lava rocks (Key and Woods, 1996; in Innes, 2001). From the distribution and recorded reinvasions of Norway rats it appears that they can cross up to 1km of water comfortably, and up to 2km of open water more rarely when conditions are suitable (mudflats, intermediate rocky islets, tidal flow, etc.) (Russell and Clout, 2005).

Reproduction
Placental, sexual. Females are polyestrous and ovulate spontaneously. Breeding largely determined by food availability.
Litter size normally 6 - 11, gestation is 21-24 days, young weaned at about 28 days. Females can be sexually active in the season of their birth.

Nutrition
Omnivorous and opportunistic - including raw or cooked meat and vegetable matter, grains and other seeds and berries as well as roots and a wide variety of vertebrate and invertebrate species. Adults require about 10% of their body weight per day in dry grain, and when on a dry diet they need to drink about 25ml of water. R. norvegicus in captivity has been observed to withdraw food to the nest, and sometimes store it there (Barnett and Spencer, 1951; in Campbell et al., 1984).
Norway rats on Breaksea Island, New Zealand, have been reported to eat invertebrates (beetles, spiders, wetas and flies), fish, shellfish, vegetation, and birds. A Japanese study showed that Rattus norvegicus is essentially omnivorous, eating plant matter and animal matter (eg. insects) in equal volumes (Yabe, 2004). Norway rats have also been known to attack and kill young rabbits (Bettesworth, 1972; B. Zonfrillo, pers. comm.; M. Imber, pers. obs.; in Imber et al., 2000).

General Impacts
Norway rats are known to restrict the regeneration of many plant species by eating seeds and seedlings. They prey upon most animal species smaller than themselves such as reptiles, small birds, birds eggs and freshwater and intertidal species. Norway rats eat food crops and spoil human food stores by urinating and defecating in them. Additional economic damage is caused by rats chewing through power cables etc. and spreading diseases.
Both R. norvegicus and Rattus rattus transmit the plague bacterium (Yersinia pestis) via fleas in certain areas of the world. There have been a series of recent outbreaks in Madagascar in recent years (Boiser et al. 2002).
Management Info

Preventative measures: Research has shown that it can often be difficult to eradicate rats from islands in the early stages of invasion, hence it is better to prevent rodents arriving on islands in the first place. Eliminating a single invading rat can be disproportionately difficult because of atypical behaviour by the rat in the absence of conspecifics, and because bait can be less effective in the absence of competition for food (Russell et al., 2005). Weihtong et al. (1999) provide useful information regarding the detection of rodent species using different trapping methods and bait, Dilks and Towns (2002) published by New Zealand’s Department of Conservation discusses how to detect and respond to rodent invasions on islands.

Physical: Trapping is often used on a local scale, however it generally fails to remove all individuals, as trap-shy animals can survive and repopulate the island (DoC, 2004).

Chemical: Use of anticoagulant poisons is the most common method of control. On islands, eradication has been achieved by the use of poisons. However, strict quarantine is required to prevent further spread of this species to additional islands. One of the world's largest successful eradication operations was on the 3,100 hectare Langara Island in British Columbia, Canada. The eradication campaign was begun (after preparation and trials) in July 1995 and the island was declared free of rats in May 1997 (Kaiser et al., 1997). Another example of a successful rat eradication was on Kapiti Island, New Zealand (1970 ha) where "second-generation" anticoagulant poisons have been used (Empson and Miskelly, 1999). The world's largest rat eradication project to date is on Campbell Island (11,300 ha), where eradication was declared in 2003. Fisher et al. (2004) suggest that diphacinone especially, and also coumatetralyl and warfarin, should be evaluated in field studies as alternative rodenticides in New Zealand. Brodifacoum, the most widely used rodenticide in New Zealand currently, can acquire persistent residues in non-target wildlife. Mineau et al. (2004) discussed a risk assessment of second generation rodenticides at the 2nd National Invasive Rodent Summit. O'Connor and Eason (2000) discusses the variety of baits which are available for use on offshore islands in New Zealand.

An investigation Spurr et al. (2007) was carried out to assess the behavioural response of ship rats to four different bait station types. Yellow plastic pipe, wooden box ('rat motel'), and wooden tunnel bait stations were found all suitable for surveillance of ship rats and the first two at least for Norway rats (all were readily entered and had a similar amount of bait eaten from them).

Biological: Contraceptive methods of control are currently experimental, but the potential for effective control using contraceptive methods is promising. National Wildlife Research Center (USA) scientists are working on several possible formulations that may make effective oral immunisation possible (Nash and Miller, 2004).

Pathway

Rattus norvegicus can be transported in either bulk or loose equipment or simply by stowing away on a vessel. Their habit of living near wharves increases the chances of this happening.

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment
Review: Pete McClelland, Dept. of Conservation, Invercargill, New Zealand

Publication date: 2011-03-14

ALIEN RANGE

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[60] NEW ZEALAND</td>
<td>[1] NIUE</td>
</tr>
<tr>
<td>[13] UNITED STATES</td>
<td>[1] UNITED STATES MINOR OUTLYING ISLANDS</td>
</tr>
</tbody>
</table>

Red List assessed species 67: EX = 7; CR = 13; EN = 15; VU = 20; NT = 10; LC = 2;

- *Acrocephalus rimatarae* VU
- *Afroablepharus africana* VU
- *Anas eatoni* VU
- *Anas nesiotis* EN
- *Aphrastura masafuerae* CR
- *Acrocephalus rodericanus* EN
- *Alectroenas rodericana* EX
- *Anas georgica georgica* LC
- *Anthus antarcticus* NT
- *Aplonis mavornata* EX
FULL ACCOUNT FOR: *Rattus norvegicus*

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apteryx owenii</td>
<td>NT</td>
</tr>
<tr>
<td>Charadrius sanctaehelena</td>
<td>CR</td>
</tr>
<tr>
<td>Coracina newton</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanolimnas cerverai</td>
<td>CR</td>
</tr>
<tr>
<td>Cyanoramphus zealandicus</td>
<td>EX</td>
</tr>
<tr>
<td>Eremochelys imbricata</td>
<td>CR</td>
</tr>
<tr>
<td>Ferminia cerverai</td>
<td>EN</td>
</tr>
<tr>
<td>Fratercula arctica</td>
<td>LC</td>
</tr>
<tr>
<td>Gallirallus australis</td>
<td>VU</td>
</tr>
<tr>
<td>Himantopus novaezelandiae</td>
<td>CR</td>
</tr>
<tr>
<td>Larus bulleri</td>
<td>EN</td>
</tr>
<tr>
<td>Megapodius tayerouse</td>
<td>EN</td>
</tr>
<tr>
<td>Oligoryzomys victus</td>
<td>EX</td>
</tr>
<tr>
<td>Oligosoma fallai</td>
<td>VU</td>
</tr>
<tr>
<td>Oreomystis bairdi</td>
<td>CR</td>
</tr>
<tr>
<td>Phalacrocorax featherstoni</td>
<td>EN</td>
</tr>
<tr>
<td>Phoebetria palpebrata</td>
<td>NT</td>
</tr>
<tr>
<td>Procellaria cinerea</td>
<td>NT</td>
</tr>
<tr>
<td>Pseudobulweria macgillivrayi</td>
<td>CR</td>
</tr>
<tr>
<td>Pterodroma cervicalis</td>
<td>VU</td>
</tr>
<tr>
<td>Pterodroma longirostris</td>
<td>VU</td>
</tr>
<tr>
<td>Pterodroma sandwichensis</td>
<td>VU</td>
</tr>
<tr>
<td>Puffinus bulleri</td>
<td>VU</td>
</tr>
<tr>
<td>Puffinus griseus</td>
<td>NT</td>
</tr>
<tr>
<td>Puffinus newelli</td>
<td>EN</td>
</tr>
<tr>
<td>Sterna albostriata</td>
<td>EN</td>
</tr>
<tr>
<td>Tropodytes cobbii</td>
<td>VU</td>
</tr>
<tr>
<td>Vini kuhlii</td>
<td>EN</td>
</tr>
<tr>
<td>Zosterops modestus</td>
<td>EN</td>
</tr>
</tbody>
</table>

Arvicola sapidus VU
Copsychus sechellarum EN
Coracina typica VU
Cyanoramphus uralensis EX
Cyclura pinguis CR
Eudyptes chrysokeon VU
Foudia sechellarum NT
Fulica alia VU
Haematopus chathamensis EN
Hypsipetes olivaceus VU
Leiolopisma telfairi VU
Mergus australis EX
Oligosoma acinisum NT
Oligosoma otagense EN
Phalacrocorax campbelli VU
Philesturnus carunculatus NT
Procellaria aequinoctialis VU
Procellaria leucoptera EX
Pterodroma cahow EN
Pterodroma externa VU
Pterodroma phaeopygia CR
Puffinus auricularis CR
Puffinus creatopus VU
Puffinus mauretanicus CR
Puffinus velkouan NT
Thinornis novaeseelandiae EN
Turdus olivaceofuscus NT
Zosterops chloronothus CR

BIBLIOGRAPHY

76 references found for *Rattus norvegicus*

Management information

 Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors' experience with that of other workers.

 Summary: Eradication case study in *Turning the tide: the eradication of invasive species*.

- BirdLife Malta Undated. The Yelkouan Shearwater Project

Summary: Available from: http://sisbib.unmsm.edu.pe/BVrevistas/biologia/v17n2/pdf/a07v17n2.pdf [Accessed 23 February 2011]

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

Summary: A Guide To The Identification And Collection Of New Zealand Rodents, information on trapping methods.

Dilks, P and Towns, D., 2002. Developing tools to detect and respond to rodent invasions of islands: workshop report and recommendations. DOC SCIENCE INTERNAL SERIES 59

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database soon. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Turning the tide: the eradication of invasive species.

FULL ACCOUNT FOR: **Rattus norvegicus**

Pacific Invasives Initiative (PII). 2006. Eradicating invasive species from Kayangel Atoll, Palau

Poncet, S. 2011. Falkland Islands Rat Eradication Register Last Updated 20 October 2011

South Georgia Heritage Trust, 11 December 2010. Environmental Impact Assessment for the Eradication of Rodents from the Island of South Georgia

South Georgia Heritage Trust, 11 December 2010. Environmental Impact Assessment for the Eradication of Rodents from the Island of South Georgia

South Georgia Heritage Trust, 15 December 2010. Initial Environmental Evaluation for the eradication of rodents from Thatcher Peninsula, South Georgia

South Georgia Heritage Trust, 4 December 2010. Operational Plan for the Eradication of Rodents from South Georgia: Phase 1

South Georgia Heritage Trust, 9 December 2009. Initial Environmental Evaluation for the eradication of rodents from Greene Peninsula, South Georgia

South Georgia Heritage Trust, 6 December 2009. Initial Environmental Evaluation for the eradication of rodents from the Mercer bailing zone, South Georgia

South Georgia Heritage Trust, 8 December 2010. Initial Environmental Evaluation for the eradication of rodents from Saddle Island, South Georgia

South Georgia Heritage Trust, 10 December 2009. Initial Environmental Evaluation for the eradication of rodents from Greene Peninsula, South Georgia

South Georgia Heritage Trust, 14 December 2010. Initial Environmental Evaluation for the eradication of rodents from Thatcher Peninsula, South Georgia

South Georgia Heritage Trust, 14 December 2010. Initial Environmental Evaluation for the eradication of rodents from Saddle Island, South Georgia

South Georgia Heritage Trust, 14 December 2011. Initial Environmental Evaluation for the eradication of rodents from Saddle Island, South Georgia

South Georgia Heritage Trust, 14 December 2011. Initial Environmental Evaluation for the eradication of rodents from Greene Peninsula, South Georgia

South Georgia Heritage Trust, 14 December 2011. Initial Environmental Evaluation for the eradication of rodents from Thatcher Peninsula, South Georgia

Rattus norvegicus

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.iucngisd.org/gisd/species.php?sc=159 [Accessed 08 October 2022]

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Available from: http://www.seaturtle.org/mtn/PDF/MTN117.pdf [Accessed 3 August 2007]

Global Invasive Species Database (GISD) 2022. *Species profile Rattus norvegicus.*

Summary: The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page (http://www.conabio.gob.mx/invasoras/index.php/Portada), under the section Novedades for information on updates.

La lista del Sistema de informacion sobre especies invasoras de Mexico incluye informacion sobre el nombre cient?fico, familia, grupo y nombre com?n, as? como ?bitat, estado de la invasi?n en M?xico, rutas de introducci?n y ligas a otros sitios especializados. Algunas de las especies de mayor riesgo ya tienen una liga directa a la p?gina de alertas. Es importante resaltar que estas listas se encuentran en constante proceso de actualizaci?n, por favor consulte la portada (http://www.conabio.gob.mx/invasoras/index.php/Portada), en la secci?n de novedades, para conocer los cambios.

Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Available from: http://www.conabio.gob.mx/invasoras/index.php/Species_invasoras_-_Mam%C3%ADferos [Accessed 30 July 2008]

Summary: Consequences of the biodiversity of New Caledonia of the introduction of plant and animal species. ITIS (Integrated Taxonomic Information System), 2005. Online Database Rattus norvegicus

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Lecorre, com pers., 2007

Summary: Personal communication with Matthieu Lecorre, from the University of La R?union.

Summary: Consequences to the biodiversity of New Caledonia of the introduction of plant and animal species.

Picot F. 2005. - Plan de conservation du Mazambron marron, Aloe macra Haw., Aloe section Lomatophyllum Rowley. CBNM, non pub?.

Urtizberea, pers.comm., 2007

Summary: Personal communication with Frank Urtizberea, from the Direction de l' Agriculture et de la For?t.