Lonicera japonica

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophya</td>
<td>Magnoliopsida</td>
<td>Dipsacales</td>
<td>Caprifoliaceae</td>
</tr>
</tbody>
</table>

Common name
madreselva (English, Dominican Republic), Japanisches Geissblatt (German), Japanese honeysuckle (English), Chinese honeysuckle (English), Hall's honeysuckle (English), madressilva (Portuguese, Brazil)

Synonym
Lonicera japonica, var. chinensis (P.W. Wats.) Baker
Nintoa japonica, (Thunb.) Sweet
Lonicera japonica, var. chinensis
Nintoa japonica
Lonicera flexuosa, Thun.
Caprifolium hallianum, Hort.
Lonicera brachypoda, DC.

Similar species

Summary
Lonicera japonica is an extremely vigorous vine which grows up through the canopy, smothering and ultimately killing the host tree. It competes with native plants for light and nutrients and prevents the understorey and small trees from developing, causing a reduction in forest diversity. Lonicera japonica is shade and drought tolerant, though it needs full to partial sunlight to grow successfully. It spreads rapidly via above-ground runners that root at nodes and its seeds may be eaten by birds and then dispersed. It is planted in gardens and along roadsides for landscaping purposes and can also be spread by the dumping of garden waste.

Species Description
Lonicera japonica is an evergreen in its southern range and semi-evergreen in its northern range. Stems are hollow with peeling reddish-brown bark and usually 2 to 3m long when developed. Leaves are 4 to 8cm long and ovate in shape. *L. japonica* produces white to yellowish tubular flowers that are 2.5 to 5cm long and black berries that contain 2 to 12 seeds. The seeds are 2 to 3mm long, ovate in shape, and dark brown to black in colour. Flowers are produced during summer and "fruit mature and are dispersed during autumn in eastern United States" (Hidayati et al. 2000). The blooming period extends from April to December in Georgia (Andrews 1919), late May to October in Kentucky (Nuzzo 1997), May to June in Illinois (Mohenbrock 1986), and June in Michigan (Nuzzo 1997).
Lifecycle Stages

Lonicera japonica has an extended growing season, owing to its evergreen nature.

Uses

L. japonica is beneficial as winter forage for white tail deer and is used for this purpose by wildlife managers. Birds and cotton-tailed rabbits also eat the seeds and leaves of the vine. It provides a habitat cover of twisted vines for birds and small mammals. Landscapers use it because of its fragrant smell. It is considered a valuable medical herb in China, where it is used to treat chicken pox and to maintain human vascular homeostasis.

Habitat Description

Lonicera japonica is found in a variety of habitats, including fields, forest edges and openings, disturbed woods, and floodplains. It is shade and drought tolerant, though it needs full to partial sunlight to grow successfully. *L. japonica* is still planted in gardens and along roadsides for landscaping purposes.

Reproduction

Lonicera japonica reproduces vegetatively and by seed. Seeds are spread mostly by birds, which ingest the berries and excrete the seeds. *L. japonica* plants spread by way of aboveground runners that root at the nodes. The plants are pollinated by a variety of insects, such as bumblebees, butterflies, and especially hawkmoths, but in some areas may produce few fruits and seeds (Larson et al. 2002). Seeds require cold stratification to overcome dormancy (Hidayati et al. 2000). *L. japonica* produces 2 to 12 seeds per berry.

General Impacts

L. japonica competes with natives for light and nutrients. It outcompetes natives by spreading rapidly and completely covering and toppling small trees and shrubs in the process. This prevents the understory and small trees from developing, causing a reduction in forest understory diversity. The newly opened understory causes *L. japonica* to spread rapidly and provide habitat to other invasives, such as *Hedera helix* (English ivy) and *Pueraria montana* (kudzu).
Management Info

Preventative measures: A Risk Assessment of *Lonicera japonica* for Hawai'i and other Pacific islands was prepared by Dr. Curtis Daehler (UH Botany) with funding from the Kaulunani Urban Forestry Program and US Forest Service. The alien plant screening system is derived from Pheloung *et al.* (1999) with minor modifications for use in Pacific islands (Daehler *et al.* 2004). The result is a score of 12 and a recommendation of: "Likely to cause significant ecological or economic harm in Hawai'i and on other Pacific Islands as determined by a high WRA score, which is based on published sources describing species biology and behaviour in Hawai'i and/or other parts of the world."

Physical: Mowing and grazing control the spread of *L. japonica*, however, this does not eradicate it. Prescribed burns remove aboveground vegetation and reduce new growth but do not destroy roots, which will continue to produce sprouts.

Chemical: Chemical control is effective if used in the correct concentration and applied at the appropriate time of year. An effective treatment appears to be a foliar spray of 1.5% glyphosate applied shortly after the first frost.

Integrated management: The most effective eradication technique seems to be a combination of both herbicide application and burning. The evergreen nature of the plant throughout its range allows it to photosynthesize longer, providing it with a competitive advantage over other plants that go dormant earlier. But fortunately, this also allows for easier identification, assessment and treatment among dormant native plants.

Pathway

It's planted along roadsides and in gardens for landscaping purposes.

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Dr. Katherine C. Larson, Associate Professor of Biology; University of Central Arkansas Conway, USA Dr. Siti N. Hidayati, Adjunct Professor of Biology; Department of Biology Middle Tennessee State Uni

Publication date: 2005-11-16

ALIEN RANGE

[39] UNITED STATES
Red List assessed species 6: CR = 1; VU = 1; LR/nt = 1; LR/lc = 3;

- **Sarracenia alata** LR/nt
- **Sarracenia leucophylla** VU
- **Sarracenia oreophila** CR
- **Sarracenia flava** LR/lc
- **Sarracenia minor** LR/lc
- **Sarracenia psittacina** LR/lc

BIBLIOGRAPHY

16 references found for *Lonicera japonica*

Management information

Summary: A study on the use of a screening system to assess proposed plant introductions to Hawaii or other Pacific Islands and to identify high-risk species used in horticulture and forestry which would greatly reduce future pest-plant problems and allow entry of most nonpests.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: The National Pest Plant Accord is a cooperative agreement between regional councils and government departments with biosecurity responsibilities. Under the accord, regional councils will undertake surveillance to prevent the commercial sale and/or distribution of an agreed list of pest plants.

Summary: Discusses impacts species has had on a Reserve in Australia. Examines chemical and physical control methods and how control has been reached.

Tasman District Council (TDC) 2001. Tasman-Nelson Regional Pest Management Strategy

Summary: This database compiles information on alien species from British Overseas Territories.

Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Gel pruning is being investigated as an environmentally friendly and effective chemical application system for selectively killing invasive vines.

Summary: Eradication case study in Turning the tide: the eradication of invasive species.

General information

Summary: L objectif de ce papier est d identifier les zones prioritaires en mati?re de gestion des invasions biologiques ? La R?union en mod?lisant la distribution actuelle et potentielle d une s?lection de plantes parmi les plus envahissantes.

ITIS (Integrated Taxonomic Information System). 2005. Online Database Lonicera japonica

Langeland, K.A. and Burks, K. C (Eds) 1998. Identification and Biology of Non-Native Plants in Florida's Natural Areas, University of Florida, Lonicera japonica

