Bythotrophes longimanus

System: Freshwater

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Arthropoda</td>
<td>Branchiopoda</td>
<td>Diplostraca</td>
<td>Cercopagidae</td>
</tr>
</tbody>
</table>

Common name

spiny water flea (English), Cederstroem-Blattflusskrebs (German), Eurasian spiny water flea (English), spiny waterflea (English)

Synonym

Bythotrophes cederstroemii, Schodler, 1877

Similar species

Cercopagis pengoi

Summary

Bythotrophes longimanus, the spiny water flea, is a predatory cladoceran native to northern Europe and Asia. It was introduced to the North American Great Lakes through ballast water and has since spread to a number of inland lakes. *B. longimanus* competes directly for prey with juvenile and small fish along with predatory zooplankton. It can foul fishing lines and downrigger cables, and can have substantial impacts on zooplankton community structure.

view this species on IUCN Red List

Species Description

The spiny water flea is a freshwater crustacean characterised by a well developed abdominal region (metasoma), a cauda continued into a long, thin caudal appendage, a head clearly delimited from the trunk and the ocular part of the head globular and filled with a large eye separated by a depression from the head shield. Adult *Bythotrophes* from the Great Lakes measure between about 1.5 and 5mm in length (excluding caudal spine). They are characterised by a long caudal tail spine that is barbed and can be up to 7mm in length (Rivier, 1998)

Notes

B. longimanus exhibits a high degree of morphological variability both throughout its range and seasonally within a locality. Until recently several different species were recognised, although these are now seen to be simply manifestations of the extreme polymorphism of *B. longimanus*. Currently, only the species *longimanus* is recognised in the genus *Bythotrophes* (Rivier, 1998). Initial reports of *Bythotrophes longimanus* in North America referred to the organism as *Bythotrophes cederstroemi*.
Lifecycle Stages
Sikes (2002) states that, "Through parthenogenesis the spiny water flea can exhibit explosive population growth, but its ability to produce sexual eggs allows it to increase genetic variability as well as survive and disperse under adverse environmental conditions. Development time till primaparity (1st time mom) is not significantly different for the two modes of reproduction, averaging about 14 days. Sexually reproduced eggs can go into a semi-static metabolic condition called diapause. Through these sexual reproduced "resting eggs", the next generation of *B. longimanus* can overwinter and hatch usually when temperatures exceed 4ºC. The spiny water flea can survive a wide range of temperatures, but has lowest mortality between 5ºC and 30ºC. Its development time is temperature dependent and maximised between 20-25ºC without suffering higher mortality. Besides protection from winter conditions, many diapaused eggs can also survive passage through fish digestive tract. A female with a full clutch is double her usual weight. This fact causes increased predation on pregnant females above their conspicuous body with a single large eye and long tail spine and thereby further aids in dispersal."

Uses
Straile and Haelbich (2000) report that, "Because of its large body size and conspicuousness, *B. longimanus* is a preferred prey of freshwater fish." In the Great Lakes it has been shown to be a preferred prey of alewife (*Alosa pseudoharengus*) (Pothoven and Vanderploeg, 2004; Mills *et al.* 1992) and lake herring (*Coregonus artedii*) (Coulas *et al.* 1998). However, it is probably not utilised by smaller fish (Barnhisel and Harvey, 1995).

Habitat Description
B. longimanus is a Palaearctic species, native to northern Europe and Asia (Rivier, 1998). Within both its native and introduced range, MacIsaac *et al.* (2000) have documented a preference for large, deep, clear lakes with relatively low summer bottom temperatures. Enz *et al.* (2001) hypothesised that its absence from shallow eutrophic lakes was due to a need for deep, oxygenated water to escape from fish predation.

Reproduction
B. longimanus can reproduce both by parthenogenetic (cloning) and gamogenetic (sexual) reproduction. Parthenogenetic reproduction occurs throughout the whole life cycle, while gamogenesis occurs at the end of a growing season and results in the formation of resting eggs capable of surviving unfavourable conditions (Rivier, 1998).

Nutrition
Crustaceans, and in particular cladocerans, appear to be preferred prey items *B. longimanus* (Schultz and Yurista, 1999), although copepods and rotifers are also apparently utilised (Schultz and Yurista, 1999; Vanderploeg *et al.* 1993). "*B. longimanus* seizes prey with long arm-like antennae and hold them in place with its legs. One spiny water flea may consume as many as 20 prey organisms in a day" (Berg, 1992).
General Impacts
The invasion of *B. longimanus* into the Laurentian Great Lakes has resulted in substantial and sustained decreases in the populations of a number of (mostly cladoceran) native zooplankton species (Barbiero and Tuchman, 2004). Similar zooplankton community shifts have also been seen in Harp Lake, Ontario (Yan and Pawson, 1997). Given what is known of *B. longimanus*’s feeding habits (e.g., Schultz and Yurista, 1999), these impacts have presumably resulted from direct predation. The impacts of *B. longimanus* on fish community dynamics is unclear at present. While directly competing with small fish for food, *B. longimanus* is also utilised as food by some fish species (Coulas *et al.* 1998).

"Surveys of Ontario anglers indicate that *B. longimanus* is widely regarded as a nuisance. With its long caudal process, it can foul fishing lines and downrigger cables, potentially resulting in the loss of hooked fish." (Boudreau and Yan, 2004).

Management Info
Preventative measures: Ontario has initiated its own volunteer monitoring program for *B. longimanus*. Boudreau and Yan (2004) conducted an investigation to determine if the monitoring program was successful. The authors determined that, "Volunteer monitoring programs not only benefit the parent or supporting organisation by helping carry out their mandates, they also serve a great purpose in educating the public. The best way to prevent the further spread of these organisms into Ontario's inland lakes is to educate the boaters that frequent the province's waterways." Johnson (2003) has been promoting education and word of mouth in Wisconsin to prevent the further spread of the species within that state. Fliers have been posted in strategic locations, and Boaters are informed firsthand of precautions they should take in order to prevent the spread of *B. longimanus*.

Sikes (2002) states that, "Personal management practices for boaters and anglers include cleaning of boating equipment with high-pressure water or heated water upwards of 104°F. Also bait buckets should not be emptied into waters, instead empty on land. Visual inspection of rigging, fishing, and anchor lines as well as the props and hulls of boats can help limit *B. longimanus* spread. Boats should be allowed to dry for at least 5 days before transport between lakes, but because of *B. longimanus* resting eggs longer periods are recommended. Boats and trailers can be towed through carwashes if exposed to infected waters for long time periods." Sikes (2002) reports that, "Current management practices for the spiny water flea seek to limit its spread to other lakes. Predictions can be made on the invasion potential for surrounding areas using the vectors of transfer, namely humans. One main factor is the lakes proximity to major roads and lakes within 3.4 km show particular vulnerability." The author also reports that, "The accidental introduction of ballast water invaders like *B. longimanus*, the zebra mussel, and others could possibly have been avoided by ships using open water ballast exchange practices."

Principal source: Sikes, 2002 Spiny Water Flea *Bythotrephes longimanus* Leydig 1860

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Richard P. Barbiero, Ph.D.\ Senior Environmental Scientist CSC Chicago USA
Publication date: 2005-08-10

ALIEN RANGE

[4] CANADA
[1] LAKE ERIE
[1] LAKE MICHIGAN
[1] LAKE SUPERIOR
[9] UNITED STATES

GREAT LAKES
LAKE HURON
LAKE MUSKOKA
LAKE SUPERIOR
UNITED STATES

BIBLIOGRAPHY

48 references found for Bythotrephes longimanus

Management information

Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance.

Toolkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Vilizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:
[Accessed 13 October 2011]

The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].

Summary: Introduced species impact in the North American Shield lakes.

Summary: Spiny water flea invasion impact.

General information

