Bambusa vulgaris

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophyta</td>
<td>Liliopsida</td>
<td>Cyperales</td>
<td>Poaceae</td>
</tr>
</tbody>
</table>

Common name

Synonym
- Arundarbor arundinacea, (Retz.) Kuntze
- Arundarbor bambos, Kuntze, Rev. Gen. Pl. 2, 1891
- Arundarbor blancoi, (Steudel) Kuntze 1891
- Arundarbor fera, (Miquel) Kuntze 1891
- Arundarbor fera, Rumphius 1743
- Arundarbor monogyna, (Blanco) Kuntze 1891
- Arundo bamboa, Miller 1768
- Arundo bambos, L.
- Arundo fera, Oken 1841
- Bambos arundinacea, Retz.
- Bambusa arundinacea, var. picta Moon 1824
- Bambusa balcooa, Roxburgh 1832
- Bambusa bambos, (L.) Voss
- Bambusa biancoi, Steudel 1854
- Bambusa capensis, Rupe.
- Bambusa fera, Miquel 1857
- Bambusa humilis, Reichenbach ex. Ruprecht 1839
- Bambusa madagascariensis, Hort. ex A. & C. Rivières 1878
- Bambusa mitis, Blanco 1837
- Bambusa monogyna, Blanco 1837
- Bambusa sieberi, Grisebach 1864
- Bambusa striata, Lodder
- Bambusa surinamensis, Ruprecht 1839
- Bambusa thauarsii, Kunth 1822
- Bambusa tuloides, Munro
- Bambusa vasaria, Herbier Hamilton
- Dendrocalamus balcooa, (Roxburgh) Voigt 1845
- Leleba vulgaris, (Schrad. ex Wendland) Nakai 1933
- Nastus thauarsii, (Kunth) Raspail 1825
- Nastus viviparus, Raspail 1825
- Phyllostachys striata, (Lodder. ex Lindl.) Nakai

Similar species

Summary

Bambusa vulgaris is the most widespread member of its genus, and has long been cultivated across the tropics and subtropics. It prefers lowland humid habitats, but tolerates a wide range of climatic conditions and soil types. It commonly naturalises, forming monospecific stands along river banks, roadsides and open ground.
Species Description
Although *Bambusa vulgaris* is taxonomically a grass, its habit is tree-like. It forms dense stands of cylindrical, jointed woody stems up to 20m in height and 4-10cm in diameter; leafy branches at nodes, with narrow lanceolate leaves up to 30cm long.

Lifecycle Stages
Bambusa vulgaris reproduces almost exclusively by vegetative means. "Flowering is extremely rare" (Quatrocchi 2006).

Uses
Bambusa vulgaris is used for construction of houses, huts, boats, fences, props and furniture; as raw material for paper pulp; shoots are rarely used as a vegetable or as livestock fodder (although toxic effects to horses noted by Barbosa *et al*. 2006); planted as ornamental or boundary marker; used to support banana plants; split stems used for brooms, baskets; in New Guinea, culms used to make combs and penis gourds; used to make musical instruments; medicinal uses include as abortifacient, for kidney troubles, leaves used as sudorific and febrifuge agents, sap to treat fever and hematuria, tabasheer from culm internodes to treat infantile epilepsy, bark astringent and emmenagogue (Ohrnberger 1999; Quatrocchi 2006).

Habitat Description
Bambusa vulgaris "Occurs spontaneously or naturalised mostly on river banks, road sides, wastelands and open ground; generally at low altitudes. In cultivation it thrives best under humid conditions up to 1000m altitude, but tolerates unfavourable conditions as well: dry season (plants may become completely defoliated); low temperature (grows up to 1200m altitude, survives -3 degrees C); also tolerates a wide range of soil types." (Ohrnberger 1999, p. 279)

General Impacts
Bambusa vulgaris forms extensive monospecific stands where it occurs, excluding other plant species.
B. vulgaris colonises along streams into forest (Blundell *et al*. 2003)
Management Info
Preventative measures: A Risk Assessment of Bambusa vulgaris for Hawai‘i and other Pacific islands was prepared by Dr. Curtis Daehler (UH Botany) with funding from the Kaulunani Urban Forestry Program and US Forest Service. The alien plant screening system is derived from Pheloung et al. (1999) with minor modifications for use in Pacific islands (Daehler et al. 2004). The result is a score of 5 and a recommendation of: "the plant requires further evaluation in Hawai‘i and on other Pacific Islands as determined by a low WRA score, which is based on published sources describing species biology and behaviour in Hawai‘i and/or other parts of the world."

Physical: Digging plants out may require heavy equipment. Continuing removal will probably be necessary due to resprouting. Continued cutting or mowing will eventually kill most plants by exhausting food reserves. Livestock will graze shoots but cannot bring down large plants once established (PIER 2007). Toxic effects have been noted in horses that ingested large quantities of leaves (Barbosa et al. 2006).

Chemical: Remove tops and spray regrowth with Glyphosate or Amitrol 2%, or imazapyr or glyphosate plus fluazifop. Velpar can be used but is persistent in the soil. However, it has been reported that glyphosate does not adequately translocate to the rhizomes (PIER 2007). The effectiveness of the use of herbicides to eradicate weedy bamboo was investigated in Puerto Rico. The study Cruzado et al. (1961) found that out of the 25 different compounds tested on a total of 12 bamboo species, the most effective treatments were the application of monuron, TCA and dalapon to the bases of intact or cut bamboo culms and the use of amitrole as a spray for regrowth. Combinations of these treatments were found to be most effective against B. vulgaris. The authors note that highly resistant species required a second treatment. They also note that decaying of dead bamboo is slow.

Pathway
Bambusa vulgaris was introduced into European botanic gardens (Ohrnberger 1999). Bambusa vulgaris are planted on slopes to control erosion (Quatrocchi 2006). Bambusa vulgaris stems are used for houses, huts, fences, banana plant supports (Quatrocchi 2006)

Principal source:

Compiler: Interim compiled by Ben Phalan, Conservation Science Group Department of Zoology University of Cambridge United Kingdom & IUCN/SSC Invasive Species Specialist Group (ISSG) Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review:

Publication date: 2009-12-10

ALIEN RANGE
FULL ACCOUNT FOR: *Bambusa vulgaris*

COSTA RICA

FIJI

INDIA

JAMAICA

KIRIBATI

MARSHALL ISLANDS

MICRONESIA, FEDERATED STATES OF

NEW CALEDONIA

NORTHERN MARIANA ISLANDS

PUERTO RICO

SAINT LUCIA

TONGA

VIRGIN ISLANDS, U.S.

BIBLIOGRAPHY

17 references found for *Bambusa vulgaris*

Management information

Global Compendium of Weeds (GCW), 2007. *Bambusa vulgaris* (Poaceae)

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc. Pacific Island Ecosystems at Risk (PIER), 2005. Risk assessment: *Bambusa vulgaris*

General information

Summary: Abstract: The clinical and pathological aspects of a neurological disease observed in 16 horses in Para, Amazonia, Brazil, are presented. The symptoms were mainly motor incoordination, paresis of the tongue, somnolence, difficulties in apprehension, chewing and swallowing of food, as well as instability and standing with abducted members. The clinical course was subacute or chronic and in most cases was not fatal. Postmortem examination performed in one already very sick, euthanized animal, did not show significant macroscopic lesions; histopathological examination revealed slight edema and degenerative alterations of a few axons, mainly in the medulla oblongata. In all pastures where horses were affected, plenty of bamboo had been eaten, probably because of scarcity of pasture. By feeding large amounts of fresh bamboo leaves of this region, in different growing stages, to three horses (horse 1, 47 g/kg/d for 30 days; horse 2, 10 g/kg/d for 60 days; horse 3, 18 g/kg on the first day, and 31 g/kg/d for 6 more days)-the animals ate the leaves unassisted-it was possible to reproduce nervous symptoms essentially identical to those observed in the natural disease 24 to 72 hours after the first feeding of the plant. In spite of continuous administration of the plant, intensity of the clinical signs did not increase. Based on field observations and comparison of the clinical and pathological pictures seen in the natural and experimental disease, the described illness can be concluded to be caused by the ingestion of large amounts of the leaves of Bambusa vulgaris f. vulgaris.

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals. Available from: http://www.itis.gov/servlet/SingleRpt?Srch_topic=TSN&search_value=193444 [Accessed 18 July 2008]

Summary: Describing planting of Bambusa vulgaris, apparently to revegetate deforested areas (full paper not available for reference)

Abstract: Adaptation of Bambusa vulgaris var. striata, Dendrocalamus giganteus and Phyllostachys aurea to a deforested area in Guanacaste, a northern province of Costa Rica, was studied. Three year old culms and rhizomes were selected and planted in sunny and shaded areas. D. giganteus showed the highest adaptability under sunny as well as shaded habitats, followed by B. vulgaris var. striata. P. aurea was eliminated from this area due to poor development.

Summary: At least part of the text available from: http://www.amazon.com/gp/reader/0444500200/ref=sib_dp_pt# [Accessed 06 August 2008]

Summary: At least part of the text available from: http://books.google.co.uk/books?isbn=0849313031 [Accessed 06 August 2008]

Summary: Abstract: Bamboos are useful to people wherever they grow and in Jamaica, Bambusa vulgaris is no exception. Introduced in the 18th century, this bamboo is now well established, and has been put to a wide variety of uses from early on. This paper documents the past and present uses of bamboo in Jamaica. Not freely available (cited by PIER 2007)

USDA. ARS. 2008. Bambusa vulgaris Schrad. ex J. C. Wendl. National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland

