Ilyanassa obsoleta

Common name

Synonym

- *Nassarius obsoletus*, (Say, 1822)
- *Nassa obsoleta*, (Say, 1822)

Similar species

Summary

The eastern mudsnail, *Ilyanassa obsoleta* (= Nassarius obsoletus), was originally only present on the Atlantic Coast of North America. It is now extremely abundant in North American Pacific Coast locations. In the San Francisco Bay it is reported to have overtaken the native California horn snail (*Cerithidea californica*), and reduced its population by means of competition and larval predation, leaving only small populations in secluded marsh pans, which are too salty for it to establish.

Species Description

The eastern mudsnail (*Ilyanassa obsoleta*) is a benthic prosobranch gastropod with a black or dark brown conical shell about 1.5-3cm in length containing 5-6 whorls (Cohen, 2005).

Lifecycle Stages

Eastern mudsnail (*Ilyanassa obsoleta*) egg capsules hatch into larvae after about ten days. The larvae are free swimming but rely primarily on currents for transport. Larvae feed on phytoplankton 20-30 days before settling and metamorphosing (Cohen, 2005), although this may be delayed until they find desirable substrata (Scheltema, 1961). They remain dormant during the winter and almost all of their growth takes place during the summer months. *N. obsoletus* has a life span of approximately 5 years (Scheltema, 1964).

Uses

The eastern mudsnail (*Ilyanassa obsoleta*) is popularly kept to clean aquariums.

Habitat Description
Eastern mudsnails (*Ilyanassa obsoleta*) may be found in the benthic zone of intertidal flats and estuaries. They prefer brackish waters and cling to nutritious substrata (Cohen, 2005). *N. obsoletus* are temperature sensitive and have been known to develop thinner than normal shells and are known to breed up to three months early if water temperatures are disturbed (Barnett, 1972).

Reproduction
The eastern mudsnail (*Ilyanassa obsoleta*) reproduces sexually and breeds on incoming tides during the fall and spring seasons. Mudsnails use chemo-reception to aggregate and copulate around oysters and sometimes mussels, on which they deposit capsules containing several eggs. Their deposition on living substrates is believed to decrease the likelihood of the embryo being smothered by sediment, however, they also deposit capsules among eelgrass (Rittschoff, 2002).

Nutrition
The eastern mudsnail (*Ilyanassa obsoleta*) is a facultative scavenger and deposit feeder which consumes diatoms, minute worms, algae, fish and crustacean remains, and other organic matter, including faeces (Frankenberg 1967) found on underwater surfaces. The mudsnail ingests sediment wholly and its digestive tract breaks down organic matter leaving almost completely inorganic waste (Scheltema 1964).

General Impacts
The eastern mudsnails (*Ilyanassa obsoleta*) introduction to the Pacific Coast of North America has caused a change in the native fauna. In the San Francisco Bay the once dominant California horn snail (*Cerithidea californica*) has been reduced to small populations where habitats overlap. Where the salinity is higher the populations of the California horn snail is able to survive (Race, 1982).

The invasive *N. obsoletus* preys on the eggs and larvae of the endemic *C. californica* and as a result, *C. californica* is restricted to small habitats unsuitable to *N. obsoletus*. Seasonal migration of these two species has demonstrated that their competition is a recurring problem and not an isolated incident. The invading eastern mudsnail has been found in other Pacific locations but its ecological effects have yet to be evaluated. It is believed to be transported along with Atlantic oysters, the eastern mudsnail poses a threat to new habitats and should be monitored (Race, 1982).

I. obsoleta is also host to several trematode species including one that causes swimmers itch.

Pathway
Eastern mudsnails are believed to be transported to the Pacific along with Atlantic oysters on which it lays its eggs (Cohen, 2005).

Summary: Article depicting several invasive species and their new locations.

Summary: Profile on Nassarius obsoletus compiled by the San Francisco Estuary Institute.

Summary: A sampling study in Delaware.

Summary: Study determining coprophagy rates among various marine animals.

ITIS (Integrated Taxonomic Information System), 2008. Online Database Nassarius obsoletus (Say, 1822)

Summary: Study on the effects of the invasive Nassarius obsoletus on native Cerithidea californica after its introduction to the San Francisco Bay.

Summary: Examination of the use of chemoreception to determine the location of egg deposition in Nassarius obsoletus.

Summary: Shows that Nassarius obsoletus larvae delay metamorphosis until they find a desireable substrata.

Summary: Examination of the diet and life cycle of Nassarius obsoletus.

Available from: http://estuariesandcoasts.org/cdrom/CPSC1964_5_4_161_166.pdf [Accessed 7 August 2007]