Pheidole megacephala

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Arthropoda</td>
<td>Insecta</td>
<td>Hymenoptera</td>
<td>Formicidae</td>
</tr>
</tbody>
</table>

Common name
- Grosskopfameise (German), big-headed ant (English), coastal brown-ant (English), brown house-ant (English), lion ant (English)

Synonym
- *Myrmica trinodis*, Losana 1834
- *Formica megacephala*, Fabricius 1793
- *Formica edax*, Forskal 1775
- *Oecophthora perniciosa*, Gerstacker 1859
- *Oecophthora pusilla*, Heer 1852
- *Myrmica suspiciosa*, Smith 1859
- *Atta testacea*, Smith 1858
- *Pheidole janus*, F. Smith
- *Pheidole laevigata*, Mayr
- *Myrmica laevigata*, F. Smith

Similar species
- *Atta testacea*, Smith 1858
- *Pheidole janus*, F. Smith
- *Pheidole laevigata*, Mayr
- *Myrmica laevigata*, F. Smith

Summary
Pheidole megacephala is one of the world's worst invasive ant species. Believed to be native to southern Africa, it is now found throughout the temperate and tropical zones of the world. It is a serious threat to biodiversity through the displacement of native invertebrate fauna and is a pest of agriculture as it harvests seeds and harbours phytophagous insects that reduce crop productivity. Pheidole megacephala are also known to chew on irrigation and telephone cabling as well as electrical wires.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=132)
Species Description
It is a small ant (minor workers approximately 2mm long and major workers 3-4mm long), ranging in colour from a pale yellow to a very dark brown. The first antennal segment (scape) of the minor workers far exceeds the top of the head, and is covered in many long hairs. There are no spines on the front of the body (pronotum), but two very small spines on the rear of the body (propodeum) facing almost directly up. There are many small punctations on the rear side of the body, and side of the head, but remaining body areas are smooth and shiny. The entire body is covered in many sparse, long hairs. The second waist segment (post petiole) is conspicuously swollen.

Please click on AntWeb: Pheidole megacephala for more images and assistance with identification. The AntWeb image comparison tool lets you compare images of ants at the subfamily, genus, species or specimen level. You may also specify which types of images you would like to compare: head, profile, dorsal, or label.

Please see PaDIL (Pests and Diseases Image Library) Species Content Page Ants: Coastal brown-ant for high quality diagnostic and overview images.

Please follow this link for a fully illustrated Lucid key to common invasive ants [Hymenoptera: Formicidae] of the Pacific Island region [requires the most recent version of Java installed]. The factsheet on Pheidole megacephala contains an overview, diagnostic features, comparison charts, images, nomenclature and links. (Sarnat, 2008)

Lifecycle Stages
This ant has a complete life-cycle, and developmental time and longevity of each stage is highly dependent on temperature. Incubation time of eggs ranges from 13-32 days. Duration of the larval stage ranges from 23-29 days. Duration of the pupal stage ranges from 10-20+ days. Lifespans of minor workers have been shown to be 78 days at 21C, and 38 days at 27C.

Reproduction
Sexual reproduction by fertile queens. Insemination of virgin queens occurs once within the parent colony, then the male dies. Reproduction is year-round, but would vary according to climatic conditions of each locality.

Queens have been documented to lay up to 292 eggs per month.

Nutrition
Omnivorous. Will capture and kill invertebrates and small vertebrates (e.g. bird hatchlings). Harvests seeds, and tends phytophagous insects. General scavenger.

General Impacts
This ant displaces most native invertebrate faunas directly through aggression, and as such is a serious threat to biodiversity. Evidence also exists of reductions in vertebrate populations where this ant is extremely abundant. Effects on plants and horticultural crops can be direct through the likes of seed harvesting, or indirect through the likes of harbouring phytophagous insects which reduce plant productivity. It is known to facilitate the invasion of introduced plant species. This ant is known to chew on irrigation, telephone cabling and electrical wires.
Management Info

Preventative measures: Preventative management is the best option stopping the spread of this species, with attention focused on the movement of soils, particularly in potted plants, and the movement of all other materials from infested areas. The Pacific Ant Prevention Programme is a proposal prepared for the Pacific Plant Protection Organisation and Regional Technical Meeting For Plant Protection. This plan aims to prevent the red imported fire ant and other invasive ant species with economic, environmental and/or social impacts, entering and establishing in or spreading between (or within) countries of the Pacific Region.

Physical: Fire may play an important role in controlling this ant in many areas by producing an environment less favourable to this ant, but providing a selective advantage to aggressive native ant species, or by direct destruction of colonies.

Chemical: Good control is achieved using the bait 'Amdro' applied over the entire infested area. Complete eradication can be achieved within 24 hours. A major eradication event within Kakadu National Park, Australia, was completed by the end of 2002. Chemical control using general insecticides and chlorinated hydrocarbons such as DDT, heptachlor and Mirex® was the favoured option until relatively recently, with most of these chemicals now phased out due to environmental consequences. Latest options include the insect growth regulators (IGRs), methoprene, fenoxycarb and pyriproxyfen which regress ovarian tissues of fertile queens turning them sterile, and the stomach toxicant hydramethylnon, which kills all workers and reproductives that come into contact with it.

Pathway
Sailing ships in the 18th and 19th centuries. General freight and household movements from infested areas.

Principal source:

Compiler: IUCN SSC Invasive Species Specialist Group
Updates with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review: Dr. Ben Hoffmann, CSIRO Sustainable Ecosystems, PMB 44 Winnellie, NT 0822, Australia

Publication date: 2011-08-03

ALIEN RANGE

Red List assessed species 1: CR = 1;
Anas laysanensis CR

BIBLIOGRAPHY
51 references found for Pheidole megacephala

Management information
AntWeb, 2006. Pheidole megacephala
Summary: AntWeb illustrates ant diversity by providing information and high quality color images of many of the approximately 10,000 known species of ants. AntWeb currently focusses on the species of the Nearctic and Malagasy biogeographic regions, and the ant genera of the world. Over time, the site is expected to grow to describe every species of ant known. AntWeb provides the following tools: Search tools, Regional Lists, in-depth information, Ant Image comparison tool PDF field guides maps on AntWeb and Google Earth and Ant genera of the world slide show.
AntWeb is available from: http://antweb.org/about.jsp [Accessed 20 April 2006]
The species page is available from:
Commonwealth of Australia, 2006a. Threat abatement plan to reduce the impacts of tramp ants on biodiversity in Australia and its territories, Department of the Environment and Heritage, Canberra.
Summary: This plan establishes a national framework to guide and coordinate Australia’s response to tramp ants, identifying the research, management, and other actions necessary to ensure the long term survival of native species and ecological communities affected by tramp ants. It identifies six national priority species as an initial, but flexible, list on which to focus attention. They are the red imported fire ant (Solenopsis invicta), tropical fire ant (S. geminata), little fire ant (Wasmannia auropunctata), African big-headed ant (Pheidole megacephala), yellow crazy ant (Anoplolepis gracilipes), and Argentine ant (Linepithema humile).

Summary: This background document to the Threat abatement plan to reduce the impacts of tramp ants on biodiversity in Australia and its territories provides supporting information on a range of issues such as tramp ant biology, population dynamics, spread, biodiversity impacts and management measures.

Summary: The invasive ant risk assessment project, prepared for Biosecurity New Zealand by Landcare Research, synthesises information on the ant species that occur in New Zealand (native and introduced species), and on invasive ants that pose a potential threat to New Zealand.

There is a great deal of information in this risk assessment on invasive ant species that is of global interest, including; biology, distribution, pest status, control technologies. The assessment project has five sections. 1) The Ants of New Zealand: information sheets on all native and introduced ants established in New Zealand 2) Preliminary invasive ant risk assessment: risk scorecard to quantify the threat to New Zealand of 75 ant species. 3) Information sheets on invasive ant threats: information sheets on all ant species scored as medium to high risk (n = 39), 4) Pest risk assessment: A detailed pest risk assessment for the eight species ranked as having the highest potential risk to New Zealand (Anoplolepis gracilipes, Lasius neglectus, Monomorium destructor, Paratrechina longicornis, Solenopsis geminata, Solenopsis richteri, Tapinoma melanocephalum, Wasmannia auropunctata) 5) Ranking of high risk species: ranking of the eight highest risk ant species in terms of the risks of entry, establishment, spread, and detrimental consequences.

NB. The red imported fire ant (Solenopsis invicta) is considered to be the worst pest in the world. However, Solenopsis invicta was specifically excluded from consideration in this risk assessment as this species has already been subject to detailed consideration by Biosecurity New Zealand.

(This invasive ant pest risk assessment was funded by Biosecurity New Zealand and Foundation for Research, Science and Technology. Undertaken by Landcare Research in collaboration with Victoria University of Wellington and Otago Museum)

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc. McEwen, F. L., Beardsley, J. W., Jr., Hapai, M. and Su, T. H. 1979. Laboratory tests with candidate insecticides for control of the big-headed ant, Pheidole megacephala (Fabricius). Proceedings of the Hawaiian Entomological Society 23: 119?123.

Summary: Discusses over a dozen of the worst arthropod pests in the South Pacific, with particular emphasis on ants and their control and management.
GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Pheidole megacephala

Summary:
A proposal prepared for the Pacific Plant Protection Organisation and Regional Technical Meeting For Plant Protection. This plan aims to prevent the red imported fire ant and other invasive ant species with economic, environmental and/or social impacts, entering and establishing in or spreading between (or within) countries of the Pacific Region.

Summary:
Piakey (Pacific Invasive Ant key) is an electronic guide designed to assist users identify invasive ant species commonly encountered in the Pacific Island region. The guide covers four subfamilies, 20 genera and 44 species.

The primary tool offered by Piakey is an interactive key designed using Lucid3 software. In addition to being fully illustrated, the Lucid key allows users to enter at multiple character points, skip unknown characters, and find the most efficient path for identifying the available taxa. Each species is linked to its own web page. These species pages, or factsheets, are linked to an illustrated glossary of morphological terms, and include the following seven sections: 1) Overview of the species; 2) Diagnostic chart illustrating a unique combination of identification characters; 3) Comparison chart illustrating differences among species of similar appearance; 4) Video clip of the species behavior at food baits (where available); 5) Image gallery that includes original specimen images and live images (where available); 6) Nomenclature section detailing the taxonomic hierarchy of the species; and 7) Links and references page for additional literature and online resources.

Summary:
PaDIL (Pests and Diseases Image Library) is a Commonwealth Government initiative, developed and built by Museum Victoria s Online Publishing Team, with support provided by DAFF (Department of Agriculture, Fisheries and Forestry) and PHA (Plant Health Australia), a non-profit public company. Project partners also include Museum Victoria, the Western Australian Department of Agriculture and the Queensland University of Technology. The aim of the project is:
 1) Production of high quality images showing primarily exotic targeted organisms of plant health concern to Australia.
 2) Assist with plant health diagnostics in all areas, from initial to high level. 3) Capacity building for diagnostics in plant health, including linkage developments between training and research organisations. 4) Create and use educational tools for training undergraduates/postgraduates. 5) Engender public awareness about plant health concerns in Australia. PaDIL is available from: http://www.padil.gov.au/aboutOverview.aspx, this page is available from:

Coccus viridis: interference with the biological control of

Cette étude porte sur les relations compétitives entre trois espèces ainsi que sur les facteurs liés à leur succès. La synthèse sur les invertébrés envahissants et potentiellement envahissants dans l’archipel calédonien a révélé une présence importante de Pheidole megacephala en Nouvelle-Calédonie. Oecologia, 87: 233-39.

Summary: Cette étude porte sur les relations compétitives entre trois espèces ainsi que sur les facteurs liés à leur succès. La synthèse sur les invertébrés envahissants et potentiellement envahissants dans l’archipel calédonien a révélé une présence importante de Pheidole megacephala en Nouvelle-Calédonie.

Summary: Cette étude porte sur les relations compétitives entre trois espèces ainsi que sur les facteurs liés à leur succès. La synthèse sur les invertébrés envahissants et potentiellement envahissants dans l’archipel calédonien a révélé une présence importante de Pheidole megacephala en Nouvelle-Calédonie.

Summary: Cette étude porte sur les relations compétitives entre trois espèces ainsi que sur les facteurs liés à leur succès. La synthèse sur les invertébrés envahissants et potentiellement envahissants dans l’archipel calédonien a révélé une présence importante de Pheidole megacephala en Nouvelle-Calédonie.

Summary: Cette étude porte sur les relations compétitives entre trois espèces ainsi que sur les facteurs liés à leur succès. La synthèse sur les invertébrés envahissants et potentiellement envahissants dans l’archipel calédonien a révélé une présence importante de Pheidole megacephala en Nouvelle-Calédonie.

Summary: Cette étude porte sur les relations compétitives entre trois espèces ainsi que sur les facteurs liés à leur succès. La synthèse sur les invertébrés envahissants et potentiellement envahissants dans l’archipel calédonien a révélé une présence importante de Pheidole megacephala en Nouvelle-Calédonie.

