Oreochromis mossambicus

System: Freshwater

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Actinopterygii</td>
<td>Perciformes</td>
<td>Cichlidae</td>
</tr>
</tbody>
</table>

Common name
Mozambikskaya tilapiya (Russian, Russian Federation), nkobue (Sena, Mozambique), mojarra (Spanish, Mexico), tilapia mozámбра (Spanish, Mexico), tilapia del Mozambique (Spanish), Mozambique mouth-breeder (English), Mozambique mouthbrooder (English), Mozambique tilapia (English), tilapia mossambica (English, Dominican Republic), kawasuzume (Japanese), blou kurper (Afrikaans, South Africa), fai chau chak ue (Cantonese, Hong Kong), tilapia (English, Bangladesh), common tilapia (English, Fiji), Java tilapia (English, Fiji), kurper bream (English, Hong Kong), Mozambique cichlid (English, India), malea (Fijian), tilapia du Mozambique (French), mujair (Javanese, Indonesia), trey tilapia khmam (Khmer, Cambodia), wu-kuo yu (Mandarin, Taiwan), mphende (Nyanja, Malawi), weißkehlbarsch (German), mosambik-maulbrüter (German)

Synonym
Tilapia mossambica , (Peters, 1852)
Sarotherodon mossambicus , (Peters, 1852)
Chromis dumerilii , Steindachner, 1864
Chromis vorax , Pfeffer, 1893
Chromis natalensis , Weber, 1897
Tilapia arnoldi , Gilchrist & Thompson, 1917

Similar species
Oreochromis

Summary
Oreochromis mossambicus (Mozambique tilapia) has spread worldwide through introductions for aquaculture. Established populations of Oreochromis mossambicus in the wild are as a result of intentional release or escapes from fish farms. Oreochromis mossambicus is omnivorous and feeds on almost anything, from algae to insects.

view this species on IUCN Red List
Species Description
28-31 vertebrae; dorsal spines XV-XVII; total dorsal rays 26-29; 30-32 lateral line scales; anal spines III, lower outer gill rakers 14-20; fine pharyngeal teeth; breeding males black (not in some cultured strains) with white lower parts on head; red dorsal and caudal fin margins; remnants of striped and barred pattern often visible in females, juveniles and non-breeding males, as a series of mid-lateral and dorsal blotches; jaws of adult males greatly enlarged, concave dorsal head profile; male genital papilla simple or slightly notched; caudal fin not densely scaled.

Notes
Mozambique tilapia (Oreochromis mossambicus) are easy to keep and breed in captivity. The so-called red tilapia in aquaculture is a hybrid between O. mossambicus and either O. niloticus or O. hornorum. O. mossambicus is the research subject of many physiological and biochemical studies in Asia. The mouthbrooding habit of this species allows it to nurture and carry its young long distances to invade habitats far from the original site of introduction (Costa-Pierce, 2003). Outside of Asia exotic tilapia fishes were not imported directly from Africa, but arrived as transits from third or fourth party sources. Founder populations may be morphologically and meristically distinct in Africa but are still reproductively compatible due to their recent divergence (Costa-Pierce, 2003).

Lifecycle Stages
Size and age of sexual maturity varies according to environmental conditions, with spawning in ponds at 2-3 months and 6-10cm for females and 7-13cm for males at intervals of 1-5 months. In natural conditions sexual maturity at greater age and size.

Habitat Description
Many tilapias (Oreochromis spp.) can live quite happily in seawater. The fact that they have not typically invaded coral reefs is perhaps due to predation by marine fishes. (Courtenay, W., pers. comm., 2004). Mozambique tilapia (Oreochromis mossambicus) is very hardy and tolerates the high salinities of atoll lagoons, such as that at Fanning Atoll (Lobel, 1980). Thought to be ideal pond fish, they readily produce stunted stocks when overcrowded, as has been observed on Pagan in the Northern Mariana Islands (Eldredge, 2000).

Reproduction
Egg-layer. Male builds spawning bowers. Up to 1775 ripe eggs in one female. Hatching after 3-5 days; fry released 10-14 days after spawning, but mouthbrooded for about another week; more than one brood per season. Reproductive performance of tilapias is affected by salinity, which suppresses the aggression of dominant males. O. mossambicus can reproduce at 35 and 49 ppt (Bhujel, 2000).

Nutrition
Mozambique tilapia (Oreochromis mossambicus) are opportunistic feeders; juveniles are mainly omnivorous, while adults mainly feed on detritus.
General Impacts
When introduced, Mozambique tilapia (*Oreochromis mossambicus*) may be a possible threat to native species through competition for food and nest space. Juveniles have been documented to feed on other fish (de Moor *et al.* 1986). Tilapia are now generally considered to be pests. Eradication has been suggested on Tarawa and Nauru (Eldredge, 2000). In Hawai‘i, this species is suspected to be a threat to native species such as striped mullet (*Mugil cephalus*) (Randall 1987; Devick 1991). Tilapia have also been considered a major factor in the decline of the desert pupfish (*Cyprinodon macularius*) in the Salton Sea area (Courtenay and Robins, 1989; Swift *et al.* 1993). Because of its presence in Dade County, Florida, Courtenay (1989) indicated that the Mozambique tilapia may eventually enter Everglades National Park.

Management Info
Mozambique tilapia (*Oreochromis mossambicus*) are hardy and can easily establish in natural waters near aquaculture ponds or cages, from which they may escape during loading-harvesting or via containment failures. Mozambique tilapia are particularly hardy, resistant to wide varieties of water salinity oxygen and pollution levels, and can migrate long distances. They are difficult to catch by angling. They occupy a wide range of habitats, and reproduce rapidly and successfully. Removal from natural water resources where they have established may be impossible. The most effective management is complete isolation of individuals from natural waters to prevent introductions. Established populations may require intensive fishing to prevent overpopulations from affecting native populations (Jeffrey McCrary pers.comm May 2005).

Preventative measures: The use of potentially invasive alien species for aquaculture and their accidental release/or escape can have negative impacts on native biodiversity and ecosystems. Hewitt *et al.* (2006) *Alien Species in Aquaculture: Considerations for responsible use* aims to first provide decision makers and managers with information on the existing international and regional regulations that address the use of alien species in aquaculture, either directly or indirectly; and three examples of national responses to this issue (Australia, New Zealand and Chile). The publication also provides recommendations for a ‘simple’ set of guidelines and principles for developing countries that can be applied at a regional or domestic level for the responsible management of Alien Species use in aquaculture development. These guidelines focus primarily on marine systems, however may equally be applied to freshwater.

Copp *et al.* (2005) *Risk identification and assessment of non-native freshwater fishes* presents a conceptual risk assessment approach for freshwater fish species that addresses the first two elements (hazard identification, hazard assessment) of the UK environmental risk strategy. The paper presents a few worked examples of assessments on species to facilitate discussion. The electronic Decision-support tools- Invasive-species identification tool kits that includes a freshwater and marine fish invasives scoring kit are made available on the Cefas (Centre for Environment, Fisheries & Aquaculture Science) page for free download (subject to Crown Copyright (2007-2008)).

Pathway
Mozambique tilapia (*Oreochromis mossambicus*) have been introduced to many locations mainly for aquaculture. Mozambique tilapia has been directly introduced as a fishery resource by governmental agencies and individual anglers into natural waters th
FULL ACCOUNT FOR: **Oreochromis mossambicus**

Principal source:

Compiler: Dr. Jos Snoeks, Africa Museum, Leuvensesteenweg, Tervuren, Belgium & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Dr. Jos Snoeks, Africa Museum, Belgium.

Publication date: 2006-06-22

ALIEN RANGE

[1] ALGERIA
[1] ANTIGUA AND BARBUDA
[44] AUSTRALIA
[1] BANGLADESH
[1] BENIN
[1] BRAZIL
[1] CAMBODIA
[1] COLOMBIA
[1] COOK ISLANDS
[1] CUBA
[1] DOMINICA
[1] ECUADOR
[1] EL SALVADOR
[1] FRENCH POLYNESIA
[1] GUADELOUPE
[1] GUATEMALA
[1] HAITI
[1] HONG KONG
[3] INDONESIA
[1] JAMAICA
[1] JORDAN
[2] KIRIBATI
[1] MADAGASCAR
[1] MALDIVES
[1] MARTINIQUE
[1] MICRONESIA, FEDERATED STATES OF
[1] NAURU
[1] NEW CALEDONIA
[1] NIUE
[1] PAKISTAN
[1] PANAMA
[1] PERU
[1] PUERTO RICO
[2] RUSSIAN FEDERATION
[1] SAMOA

[1] AMERICAN SAMOA
[1] ARGENTINA
[3] BAHAMAS
[1] BARBADOS
[1] BOLIVIA
[1] BURUNDI
[1] CHINA
[1] CONGO
[1] COSTA RICA
[1] CZECH REPUBLIC
[1] DOMINICAN REPUBLIC
[1] EGYPT
[2] FIJI
[1] GRENADA
[1] GUAM
[1] GUYANA
[1] HONDURAS
[4] INDIA
[1] ISRAEL
[1] JAPAN
[1] KENYA
[1] KOREA, REPUBLIC OF
[1] MALAYSIA
[1] MALTA
[3] MEXICO
[1] NAMIBIA
[1] NEPAL
[2] NICARAGUA
[2] NORTHERN MARIANA ISLANDS
[1] PALAU
[1] PAPUA NEW GUINEA
[1] PHILIPPINES
[1] REUNION
[1] SAINT LUCIA
[1] SAUDI ARABIA
Red List assessed species 21: CR = 2; EN = 9; VU = 7; LC = 3;

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbus andrewi</td>
<td>EN</td>
</tr>
<tr>
<td>Crossocheilus periyarensis</td>
<td>LC</td>
</tr>
<tr>
<td>Etroplus suratensis</td>
<td>EN</td>
</tr>
<tr>
<td>Garra menoni</td>
<td>VU</td>
</tr>
<tr>
<td>Horadandia atulkorali</td>
<td>VU</td>
</tr>
<tr>
<td>Hypselobarbus periyarensis</td>
<td>EN</td>
</tr>
<tr>
<td>Mesonoemacheilus pambarenensis</td>
<td>VU</td>
</tr>
<tr>
<td>Nemacheilus periyarensis</td>
<td>VU</td>
</tr>
<tr>
<td>Rohtee ogilbi</td>
<td>LC</td>
</tr>
<tr>
<td>Tor khudree</td>
<td>EN</td>
</tr>
<tr>
<td>Travancoria jonesi</td>
<td>EN</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

70 references found for *Oreochromis mossambicus*

Management information

Summary: Chapter on *Oreochromis mossambicus* from a list of non-indigenous species in the Gulf of Mexico ecosystem.

Summary: The electronic tool kits made available on the Cefas page for free download are Crown Copyright (2007-2008). As such, these are freeware and may be freely distributed provided this notice is retained. No warranty, expressed or implied, is made and users should satisfy themselves as to the applicability of the results in any given circumstance.

Tooltkits available include 1) FISK- Freshwater Fish Invasiveness Scoring Kit (English and Spanish language version); 2) MFISK- Marine Fish Invasiveness Scoring Kit; 3) MI-ISK- Marine invertebrate Invasiveness Scoring Kit; 4) FI-ISK- Freshwater Invertebrate Invasiveness Scoring Kit and AmphISK- Amphibian Invasiveness Scoring Kit. These tool kits were developed by Cefas, with new VisualBasic and computational programming by Lorenzo Vilizzi, David Cooper, Andy South and Gordon H. Copp, based on VisualBasic code in the original Weed Risk Assessment (WRA) tool kit of P.C. Pheloung, P.A. Williams & S.R. Halloy (1999).

The decision support tools are available from:

[Accessed 13 October 2011]

The guidance document is available from http://www.cefas.co.uk/media/118009/fisk_guide_v2.pdf [Accessed 13 January 2009].

Summary: The discussion paper presents a conceptual risk assessment approach for freshwater fish species that addresses the first two elements (hazard identification, hazard assessment) of the UK environmental risk strategy. The paper presents a few worked examples of assessments on species to facilitate discussion.

Available from: http://www.cefas.co.uk/publications/techrep/tech129.pdf [Accessed 1 September 2005]

Summary: This document reviews and analyses published literature, grey literature, and personal communications on the social, economic and environmental impacts of tilapias in the Asia and the Pacific.

Summary: Discusses the most invasive freshwater fish in the Pacific region and also includes a checklist of introduced fish to the Pacific.

Summary: This publication aims to first provide decision makers and managers with information on the existing international and regional regulations that address the use of alien species in aquaculture, either directly or indirectly; and three examples of national responses to this issue (New Zealand, Australia and Chile).

Hogan, A. and Vallance, T. (undated). An assessment of an NHT project to re-establish riparian zones as a Tilapia control measure. Queensland Department of Primary Industries, Walkamin QLD.

Summary: A management plan that aims to reduce tilapia numbers by improving stream habitat quality.
In 1993, Canada, Mexico and the United States signed the North American Agreement on Environmental Cooperation (NAAEC) as a side agreement to the North American Free Trade Agreement (NAFTA). The NAAEC established the Commission for Environmental Cooperation (CEC) to help the Parties ensure that improved economic efficiency occurred simultaneously with trinational environmental cooperation. The NAAEC highlighted biodiversity as a key area for trinational cooperation. In 2001, the CEC adopted a resolution (Council Resolution 01-03), which created the Biodiversity Conservation Working Group (BCWG), a working group of high-level policy makers from Canada, Mexico and the United States. In 2003, the BCWG produced the ?Strategic Plan for North American Cooperation in the Conservation of Biodiversity.? This strategy identified responding to threats, such as invasive species, as a priority action area. In 2004, the BCWG, recognizing the importance of prevention in addressing invasive species, agreed to work together to develop the draft CEC Risk Assessment Guidelines for Aquatic Alien Invasive Species (hereafter referred to as the Guidelines). These Guidelines will serve as a tool to North American resource managers who are evaluating whether or not to introduce a non-native species into a new ecosystem. Through this collaborative process, the BCWG has begun to implement its strategy as well as address an important trade and environment issue. With increased trade comes an increase in the potential for economic growth as well as biological invasion, by working to minimize the potential adverse impacts from trade, the CEC Parties are working to maximize the gains from trade while minimizing the environmental costs.

Summary: Outlines the effects of tilapia in the crater-lakes of Valle de Santiago, Mexico. (Inland Waters), Department of the Environment, Canberra. pp. 295-305.

Summary: In 1993, Canada, Mexico and the United States signed the North American Agreement on Environmental Cooperation (NAAEC) as a side agreement to the North American Free Trade Agreement (NAFTA). The NAAEC established the Commission for Environmental Cooperation (CEC) to help the Parties ensure that improved economic efficiency occurred simultaneously with trinational environmental cooperation. The NAAEC highlighted biodiversity as a key area for trinational cooperation. In 2001, the CEC adopted a resolution (Council Resolution 01-03), which created the Biodiversity Conservation Working Group (BCWG), a working group of high-level policy makers from Canada, Mexico and the United States. In 2003, the BCWG produced the ?Strategic Plan for North American Cooperation in the Conservation of Biodiversity.? This strategy identified responding to threats, such as invasive species, as a priority action area. In 2004, the BCWG, recognizing the importance of prevention in addressing invasive species, agreed to work together to develop the draft CEC Risk Assessment Guidelines for Aquatic Alien Invasive Species (hereafter referred to as the Guidelines). These Guidelines will serve as a tool to North American resource managers who are evaluating whether or not to introduce a non-native species into a new ecosystem. Through this collaborative process, the BCWG has begun to implement its strategy as well as address an important trade and environment issue. With increased trade comes an increase in the potential for economic growth as well as biological invasion, by working to minimize the potential adverse impacts from trade, the CEC Parties are working to maximize the gains from trade while minimizing the environmental costs.

Summary: Information on tilapia fisheries in Sri Lanka.

Summary: Information on distribution of tilapia within Australia.

Summary: Information on tilapia aquaculture in Jamaica.

Summary: Information on the effects of tilapia on the Bahama pupfish.

Summary: Information on the effects of salinity on breeding in Oreochromis mossambicus.

Summary: Has one record of tilapia in Hawaii.

Summary: A record of tilapia in Pearl Harbor.

Spanish:

La lista de especies del Sistema de información sobre especies invasoras no indígenas(box) en México cuenta actualmente con información sobre algunos de estos organismos, como el tilapia, que se han introducido al ambiente. Aunque existen algunas especies de mayor riesgo ya tienen una ligadirecta a la página de alertastron las listas de especies invasoras. Es importante reseñar que estas listas se encuentran en constante proceso de actualización(box), por favor consulte la portada (http://www.conabio.gob.mx/invasoras/index.php/Portada), en la sección de novedades, para conocer los cambios.

Summary: Contains information about the native range and introduced distribution of tilapia.

Summary: A small amount of information on the stocking of tilapia in the state of Morelos, Mexico.

Summary: Contains information about the native range and introduced distribution of tilapia.

Summary: Good information on tilapia distribution in Queensland.

Summary: Good information on tilapia distribution in Queensland.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Summary: Information on the effects of tilapia in the upper San Antonio River.

Food and Agriculture Organisation of the United Nations (FAO), 1998. Aquatic Species Introductions Database (DIAS).

Summary: The database includes records of aquatic species introduced or transferred from one country to another and does not consider movements of species inside the same country. Coverage of accidental introductions of organisms (e.g., through ship ballast waters) is not complete and records on this topic have been generally entered only when important impacts on fisheries or on the environment have been caused.

Summary: Impacts of tilapia upon native fish in Mexico.

Available from: [Accessed 2 February 2005]

Summary: Consequences to the biodiversity of New Caledonia of the introduction of plant and animal species.

Summary: Information on tilapia in South Africa’s Western Cape Province.

ITIS (Integrated Taxonomic Information System). Online Database Oreochromis mossambicus

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Summary: Information on tilapia in South Korea.

Summary: Useful information on the distribution of tilapia in Western Australia.

GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: Oreochromis mossambicus