Rangifer tarandus

System: Terrestrial

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Chordata</td>
<td>Mammalia</td>
<td>Artiodactyla</td>
<td>Cervidae</td>
</tr>
</tbody>
</table>

Common name
peary caribou (English), caribou (French), Norwegian reindeer (English), North American caribou (English), Eurasian reindeer (English), reno (Spanish)

Synonym

Similar species

Summary
Introduced intentionally to the subantarctic islands of Kerguelen and South Georgia, populations of Rangifer tarandus (reindeer) have had a significant impact on native vegetation of the islands due to grazing and trampling.

[view this species on IUCN Red List](http://www.iucngisd.org/gisd/species.php?sc=1264)

Species Description

Rangifer tarandus is a social deer, and can form regional herds of 50,000 to 500,000 animals which band together during spring, although these herds are generally comprised of single-sex subgroups of 10 to 1,000 individuals (Hentonen & Tikhonov, 2008). *R. tarandus* is highly nomadic and may travel 5,000km in a year. Population densities are generally very sparse, about 0.5 animals per square kilometre, however during their migration; this may reach numbers of over 19,000 animals per square kilometre (Hentonen & Tikhonov, 2008).

Lifecycle Stages

Usually one or two *Rangifer tarandus* calves are born, which wean at about 6 months and reach maturity 2.5-3.5 years. Individuals can live up to 20 years (Hentonen & Tikhonov, 2008). From birth to one year of age, both sexes double their crown to tail length and achieve 80 - 90% of their final adult size. Also during this period, both sexes increase their weight seven-fold (Leader-Williams & Ricketts, 1982(a)). Conception can occur from around 1.5 years of age.
Habitat Description

Rangifer tarandus are adapted to their cold environments by having a very thick coat and by having short tails. They can smell lichen and other foodstuffs under snow which is a special adaptation. Their major predators are bears and wolves (Hentonen & Tikhonov, 2008). *R. tarandus*’s primary habitat is Arctic and sub-Arctic tundra, open montane and woodland habitats, and is often on high mountain slopes and in alpine zones of 2,300 – 3,000 meters. *R. tarandus* typically feeds on lichens, mosses, herbs, ferns, grasses, and shoots and leaves of deciduous shrubs and trees (especially *Salix* spp. (willow) and *Betula* spp. (birch) (Hentonen & Tikhonov, 2008).

Reproduction

In *Rangifer tarandus* rutting takes place around October. Young are born around May and June, with the gestation period being about 228 days (Hentonen & Tikhonov, 2008). During the reproduction period, males lose twice as much body tissue as females, as more energy is put into the development of antlers than in pregnancy and lactation (Leader-Williams & Ricketts, 1982(a)).

Nutrition

Rangifer tarandus feeds on lichens, mosses, herbs, ferns, grasses, and shoots and leaves of deciduous shrubs and trees (especially *Salix* spp. (willow) and *Betula* spp. (birch) (Hentonen & Tikhonov, 2008).

Principal source:

Compiler: Comité français de l’UICN (IUCN French Committee) & IUCN SSC Invasive Species Specialist Group (ISSG)

Review:

Pubblication date: 2010-10-04

ALIEN RANGE

[1] ARGENTINA
[1] FALKLAND ISLANDS (MALVINAS)
[1] SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS
[1] UNITED STATES
[1] CHILE
[3] FRENCH SOUTHERN TERRITORIES

Red List assessed species 2: EN = 1; LC = 1;

Microtus abbreviatus LC
Sorex pribilofensis EN

BIBLIOGRAPHY

32 references found for *Rangifer tarandus*

Management information

Summary: This article presents the current situation and impacts of introduced mammal populations in the French sub-Antarctic Islands. The methods and management strategies in place or planned are also presented.

Summary: The history of the introductions of 4 herbivorous mammals, their populations' evolution, and their impacts on plant and animal communities are presented and discussed. Control methods are considered for the restoration of these environments.

Summary: This article reviews Spartina plantations in China and their effects on coastal morphology, soils, animals, and human beings.

Cook, S. Poncet, A.P.R. Cooper, D.J. Herbert and D. Christie Glacier retreat on South Georgia and implications for the spread of rats. Antarctic Science, Published online by Cambridge University Press 17 Feb 2010 doi:10.1017/S0954102010000064

Summary: Contains various papers about S. anglica biology, competitive ability against Puccinellia maritima, use as biofuel, and the effect on bird populations.

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]
ITIS (Integrated Taxonomic Information System). 2008. Online Database Rangifer tarandus (Linnaeus, 1758)

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Leader-Williams, N., 1985. Chapter 6b: The Sub-Antarctic Islands -Introduced Mammals, in Key Environments Antarctica (Ed) W. N. Bonner And D. W. H. Walton. Published in Collaboration with the International Union for Conservation of Nature and Natural Resources

Summary: Available from: https://www.kent.ac.uk/dice/publications/KeyEnvs_IMs.pdf [Accessed May 2010]

Summary: This paper is devoted to the modalities of introduction of alien mammals in Kerguelen archipelago (Ovis a. aries, O. a. musimon, Rangifer tarandus, Rattus rattus, Mus musculus, Oryctolagus cuniculus, Felis catus). Knowledge about the impact of these species on the insular ecosystem is summarized. Suggestions are made to attempt to solve some problems in natural conservancy. The authors insist on the fact that this damageable introduction constitutes field experiences and that it must be used it to try to understand problems in evolution and adaptation.
