Batrachochytrium dendrobatidis

System: Undefined

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td>Chytridiomycota</td>
<td>Chytridiomycetes</td>
<td>Chytridiales</td>
<td></td>
</tr>
</tbody>
</table>

Common name chytrid frog fungi (English), Chytrid-Pilz (German), chytridiomycosis (English), frog chytrid fungus (English)

Synonym

Similar species

Summary

Batrachochytrium dendrobatidis is a non-hyphal parasitic chytrid fungus that has been associated with population declines in endemic amphibian species in upland montane rain forests in Australia and Panama. It causes cutaneous mycosis (fungal infection of the skin), or more specifically chytridiomycosis, in wild and captive amphibians. First described in 1998, the fungus is the only chytrid known to parasitise vertebrates. *B. dendrobatidis* can remain viable in the environment (especially aquatic environments) for weeks on its own, and may persist in latent infections.

view this species on IUCN Red List
Species Description
Fungal Morphology: *Batrachochytrium dendrobatidis* is a zoosporic chytrid fungus that causes chytridiomycosis (a fungal infection of the skin) in amphibians and grows solely within keratinised cells. Diagnosis is by identification of characteristic intracellular flask-shaped sporangia (spore containing bodies) and septate thalli. The fungus grows in the superficial keratinised layers of the epidermis (known as the stratum corneum and stratum granulosum). The normal thickness of the stratum corneum is between 2µm to 5µm, but a heavy infection by the chytrid parasite may cause it to thicken to up to 60 µm. The fungus also infects the mouthparts of tadpoles (which are keratinised) but does not infect the epidermis of tadpoles (which lacks keratin).

The fungus produces inoperculate, smooth-walled zoosporangia (zoospore containing bodies), which are spherical to subspherical in shape. Each zoosporangium (10µm to 40µm in diameter) produces a single discharge tube, which penetrates (and protrudes out of) the skin. Eventually the plug that blocks the release of immature zoospores is shed and the mature zoospores are released. The zoospores (0.7µm to 6µm in diameter) are elongate to ovoid in shape. Each possesses a single posterior flagellum, rendering it motile in water (Mazzoni *et al.* 2003; Daszak *et al.* 1999; Berger, *et al.* 1998; Berger *et al.* 1998, Berger, Speare and Hyatt, 2000, in Daszak *et al.* 1999; Speare *et al.* 2001; Weldon *et al.* 2003). To view a scanning electron micrograph of infected skin of a wild frog (*Litoria lesueuri*) please see: Daszak *et al.* 1999. *Emerging Infectious Diseases and Amphibian Population Declines*.

To view histological sections of infected skin of *Bufo haematiticus* and *Atelopus varius* (showing the sporangia and discharge tubes of the fungus) please see: Daszak *et al.* 1999. *Emerging Infectious Diseases and Amphibian Population Declines*.

To view a histological section of severely infected skin of a wild frog (*Litoria caerulea*) please see: Berger *et al.* 1998. *Chytridiomycosis causes amphibian mortality*.

Pathogenesis of chytridiomycosis: Authors of a recent study, Voyles *et al.* (2009) have found that *B. dendrobatidis*, causes such severe electrolyte imbalances that the frog’s heart stops. The skin of amphibians maintain proper osmotic balance inside the animal and regulate respiration. The authors found that the skin of infected frogs was less adept at transporting sodium and chloride ions. Sodium and potassium concentrations in the blood of infected frogs dropped, more so as the infection intensified and the animals’hearts began to beat irregularly and ultimately stopped.

Notes
Salamanders can act as host reservoirs of chytrid infection in frogs, and vice versa (Davidson *et al.* 2003).
Lifecycle Stages

Batrachochytrium dendrobatidis has two life stages: a spherical reproductive sessile zoosporangium and a motile zoospore. The motile zoospore directs itself and attaches to the keratinised outer layers of its host. It then absorbs its tail and buries itself below the surface of the skin. It matures into a zoosporangia with rhizoids within about four days and produces and releases up to 300 zoospores into the external environment (via a discharge tube). The cycle is initiated again once a suitable substrate (in the same or a different host) is found. The presence of the fungus in the keratinised mouthparts of frog tadpoles (without actually killing them) supports the role of larvae as reservoirs for the pathogen. (The larvae of amphibian species may survive for as long as 3 years before metamorphosing.) Syntopic salamanders and frogs may also act as reciprocal pathogen reservoirs for chytrid infections. It has been suggested that *B. dendrobatidis* may not be an obligate amphibian parasite, possibly living in other non-amphibian hosts or even sapropytically (off dead tissue) (Michigan Frog Survey, 2003; Speare *et al.* 2001; Daszak *et al.* 1999; Davidson *et al.* 2003).

As of yet, no resting structures (either asexual or sexual) have been identified for *B. dendrobatidis*. The fact that sexual reproduction in chytrid fungi has been associated with the production of resistant, thick-walled resting spores has lead to the hypothesis that the production of airborne spores explains the widespread distribution of *B. dendrobatidis* in relatively pristine areas. However recent research has found evidence that shows that the population structure of *B. dendrobatidis* is largely clonal, supporting the hypothesis that the fungus lacks a sexual stage (as is the case for many chytrid fungi). This suggests that dispersal by human (or perhaps other long distance travellers, such as birds), rather than natural causes, are more likely to be the cause of the pathogen's entry into pristine areas (Morehouse *et al.* 2003; Berger *et al.* 1999, Daszak *et al.* 1999, in Morehouse *et al.* 2003).

Habitat Description

Chytridiomycosis has now been reported from 38 amphibian species in 12 families, including ranid and hyliid frogs, bufonid toads, and plethodontid salamanders. Although chytridiomycosis is found in a range of species and habitats (including African frogs in lowland regions in Africa) it has caused population declines of amphibians species confined to montane rain forests (Weldon *et al.* 2004; Daszak *et al.* 1999). The fungus prefers lower temperatures which may explain the high precedence of the fungus in high elevations in the tropics. In culture conditions optimum growth occurred at 23°C, with slower growth occurring at 28°C and (reversible) cessation of growth occurring at 29°C (Longcore, Pessier, Nichols, 1999, in Daszak *et al.* 1999).

Reproduction

Batrachochytrium dendrobatidis is diploid and primarily reproduces asexually (and clonally) by producing aquatic uniflagellated zoospores in a zoosporangium (Johnson and Speare, 2003).

Nutrition

Its occurrence solely in keratinised tissues suggests that it uses amphibian keratin as a nutrient. *Batrachochytrium dendrobatidis* will grow for at least one generation on cleaned epidermal keratin or on amphibians that have died of the infection. The fungus may also be cultured *in vitro* on tryptone agar without the addition of keratin or its derivatives (Daszak *et al.* 1999; Longcore, Pessier and Nichols, 1999, Pessier *et al.* 1999, in Daszak *et al.* 1999).
General Impacts

Batrachochytrium dendrobatidis has been found to affect at least 93 amphibian species from the orders Anura (frogs and toads) and Caudata (salamanders) in all the continents except Asia. It is thought to be one of the main causes of the global decline in frog populations since the 1960s, and the dramatic population crashes from the 1970s onwards (Parris and Beaudoin, 2004). The chytrid fungus kills frogs within 10 to 18 days (Michigan Frog Survey, 2003), although it is not known how. It may be physical, affecting respiration by altering the frog’s skin, or the fungus may give off a toxin (Michigan Frog Survey, 2003). Tadpoles are not affected, although the fungus may infect the keratinised mouthparts (Berger *et al.* 1999).

For a summary on the impacts of *B. dendrobatidis* please follow this link [impacts](#).

Key findings of the *The Global Amphibian Assessment* have revealed that one-third (32%) of the world’s amphibian species are threatened, representing 1,896 species. Threats include viral diseases, habitat loss, drought, pollution, and hunting for food. The biggest single threat appears to be *B. dendrobatidis*.

A [search](#) on the database using "diseases" as a keyword in "all" habitat types, biogeographic realm and countries results in a list of 547 species impacted by diseases (IUCN, Conservation International, and NatureServe. 2006).

Management Info

Preventative measures: Knowledge of the infectiveness and spread of *Batrachochytrium dendrobatidis* is relevant to all control strategies, particularly in the development of preventative measures. The infective unit of the fungus is the zoospore. Infection by the fungus (and thus spread of the disease) requires water because the zoospore does not tolerate dehydration. *B. dendrobatidis* remains viable for up to 3 weeks in tap water, up to 4 weeks in deionised water and even longer in lake water. Infection by an extremely small inoculum (100 zoospores) is sufficient to cause a fatal infection (Berger *et al.* in Speare *et al.* 2001; Johnson and Speare, 2003; Berger, Speare and Hyatt, 2000, in Daszak *et al.* 1999).

Please see main preventative management strategies for a summary under the following headings: improving diagnostics and knowledge of epidemiology, developing trade and quarantine regulations, raising awareness and control options.

The Amphibian Conservation Action Plan (ACAP) is designed to provide guidance for implementing amphibian conservation and research initiatives at all scales from global down to local. Chapter 4 outlines action steps relating to the detection and control of chytridiomycosis.

Principal source: Berger *et al.* 1999. Chytrid fungi and amphibian declines: Overview, Implications and Future Directions.

Daszak *et al.* 1999. Emerging Infectious Diseases and Amphibian Population Declines

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG) with support from the Terrestrial and Freshwater Biodiversity Information System (TFBIS) Programme (Copyright statement)
Review: Matthew J. Parris Assistant Professor, Department of Biology University of Memphis USA

Publication date: 2006-08-14

ALIEN RANGE

[85] AUSTRALIA
[4] COSTA RICA
[2] GERMANY
[1] ITALY
[3] MEXICO
[3] PANAMA
[1] SPAIN
[14] UNITED STATES
[1] VENEZUELA

[2] CANADA
[4] ECUADOR
[1] GHANA
[2] KENYA
[5] NEW ZEALAND
[9] SOUTH AFRICA
[1] SWAZILAND
[2] URUGUAY
[1] WEST AFRICA

Red List assessed species 512: EX = 8; CR = 196; EN = 126; VU = 63; NT = 29; DD = 36; LC = 54;

Adelotus brevis NT
Agalychnis moreletii CR
Alytes cisternasii NT
Aplastodiscus callipygius LC
Aromobates alboguttatus EN
Aromobates nocturnus CR
Atelopus angeli CR
Atelopus arthuri CR
Atelopus bomolochos CR
Atelopus carauta CR
Atelopus carrikeri CR
Atelopus chiriquiensis CR
Atelopus chrysocorallus CR
Atelopus cruciger CR
Atelopus ebenoides CR
Atelopus epikeisthos CR
Atelopus eusebianus CR
Atelopus famelicus CR
Atelopus flavescens VU
Atelopus galactogaster CR
Atelopus guanjuo CR
Atelopus halimelas CR
Atelopus laetissimus CR
Atelopus longibrachius EN
Atelopus lozanoi CR
Atelopus mandingus CR
Atelopus minutulus CR
Atelopus monohernandezii CR

Agalychnis annae EN
Allobates olfersioides VU
Anaxyrus canorus EN
Aplastodiscus flumineus DD
Aromobates leptopaldi CR
Atelopus andinus CR
Atelopus arsyeae CR
Atelopus balios CR
Atelopus boulengeri CR
Atelopus carbonerensis CR
Atelopus certus EN
Atelopus chocoensis CR
Atelopus coynei CR
Atelopus dimorphus EN
Atelopus elegans CR
Atelopus erythropus CR
Atelopus exiguis CR
Atelopus farci CR
Atelopus franciscus VU
Atelopus glyphus CR
Atelopus guatarraeensis CR
Atelopus ignescens EX
Atelopus limosus EN
Atelopus longirostris EX
Atelopus lynchii CR
Atelopus mindoesis CR
Atelopus mittermeieri EN
Atelopus mucubaiensis CR
GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: Batrachochytrium dendrobatidis

Atelopus muisca CR
Atelopus nanay CR
Atelopus nicefori CR
Atelopus oxapampae EN
Atelopus pachydermus CR
Atelopus patazensis CR
Atelopus perenuesis CR
Atelopus petiruiizi CR
Atelopus pinangoi CR
Atelopus pulcher CR
Atelopus reticulatus CR
Atelopus seminiferus CR
Atelopus serrata CR
Atelopus siranus DD
Atelopus soriano CR
Atelopus spurrelli VU
Atelopus tamaense CR
Atelopus varius CR
Atelopus zeteki CR
Bokermannohyla claresignata DD
Bolitoglossa conanti EN
Bolitoglossa dolefini NT
Bolitoglossa pserubra VU
Bolitoglossa sooyorum EN
Bombina pachypus EN
Bromeliohyla dendroscarta CR
Centrolene audax EN
Centrolene buckleyi VU
Centrolene gemmatum CR
Centrolepis lynchii EN
Centrolepis peristictum VU
Centrolepis scirtetes DD
Charadrahyla nephila VU
Chiropoteriton cracens EN
Craugastor anciano CR
Craugastor angelicus CR
Craugastor berkenbuschii NT
Craugastor catalinae CR
Craugastor chrysozetetes EX
Craugastor daryi EN
Craugastor elemnii CR
Craugastor escoeces EX
Craugastor fleischmanni CR
Craugastor guerreroensis CR
Craugastor laevissimus EN
Craugastor lineatus CR
Craugastor merendonensis CR
Atelopus nahumae CR
Atelopus nepiozomus CR
Atelopus onorei CR
Atelopus oxyrhythus CR
Atelopus palmaus DD
Atelopus pedimarmoratus CR
Atelopus petersi CR
Atelopus pictiventris CR
Atelopus planispina CR
Atelopus quimbaya CR
Atelopus sanjosei DD
Atelopus senex CR
Atelopus simulatus CR
Atelopus sonsonensis CR
Atelopus spumarius VU
Atelopus subornatus CR
Atelopus tricolor VU
Atelopus walkeri CR
Bokermannohyla circumpapata LC
Bokermannohyla hylax LC
Bolitoglossa copia DD
Bolitoglossa magnifica EN
Bolitoglossa sombra VU
Bolitoglossa subpalma EN
Bromeliohyla bromeliacia EN
Bufo bufo LC
Centrolene ballux CR
Centrolene geckoideaen VU
Centrolene heloderma CR
Centrolene medemi DD
Centrolene pipilatum EN
Charadrahyla alitipotens CR
Charadrahyla trux CR
Chiropoteriton multidentatus EN
Craugastor andi CR
Craugastor azueroensis EN
Craugastor brochi VU
Craugastor charadra EN
Craugastor cruzi CR
Craugastor emcelae CR
Craugastor epochthidius CR
Craugastor fecundus CR
Craugastor greggi CR
Craugastor inachus EN
Craugastor laticeps NT
Craugastor melanostictus LC
Craugastor mexicanus LC

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craugastor milesi</td>
<td>CR</td>
</tr>
<tr>
<td>Craugastor olandchano</td>
<td>CR</td>
</tr>
<tr>
<td>Craugastor pechorum</td>
<td>EN</td>
</tr>
<tr>
<td>Craugastor podiciferus</td>
<td>NT</td>
</tr>
<tr>
<td>Craugastor punctariolus</td>
<td>EN</td>
</tr>
<tr>
<td>Craugastor ryacobatrachus</td>
<td>EN</td>
</tr>
<tr>
<td>Craugastor rugulosus</td>
<td>LC</td>
</tr>
<tr>
<td>Craugastor sabrinius</td>
<td>EN</td>
</tr>
<tr>
<td>Craugastor sandersoni</td>
<td>EN</td>
</tr>
<tr>
<td>Craugastor tabasarea</td>
<td>CR</td>
</tr>
<tr>
<td>Craugastor trachydermus</td>
<td>CR</td>
</tr>
<tr>
<td>Crinia pseudinsignifera</td>
<td>VU</td>
</tr>
<tr>
<td>Crossodactylus gaudichaudii</td>
<td>LC</td>
</tr>
<tr>
<td>Cycloramphus ohausi</td>
<td>DD</td>
</tr>
<tr>
<td>Duellmanohyla chamulae</td>
<td>EN</td>
</tr>
<tr>
<td>Duellmanohyla lythrodies</td>
<td>EN</td>
</tr>
<tr>
<td>Duellmanohyla schmidtorum</td>
<td>VU</td>
</tr>
<tr>
<td>Duellmanohyla uranochroa</td>
<td>CR</td>
</tr>
<tr>
<td>Econiomohyla rabborum</td>
<td>CR</td>
</tr>
<tr>
<td>Eleutherodactylus cooki</td>
<td>VU</td>
</tr>
<tr>
<td>Eleutherodactylus hedricki</td>
<td>EN</td>
</tr>
<tr>
<td>Eleutherodactylus karlschmidti</td>
<td>CR</td>
</tr>
<tr>
<td>Eleutherodactylus orcutti</td>
<td>CR</td>
</tr>
<tr>
<td>Eleutherodactylus portoricensis</td>
<td>EN</td>
</tr>
<tr>
<td>Eleutherodactylus ruthae</td>
<td>EN</td>
</tr>
<tr>
<td>Eleutherodactylus semipalmatus</td>
<td>CR</td>
</tr>
<tr>
<td>Eleutherodactylus turquinensis</td>
<td>CR</td>
</tr>
<tr>
<td>Eleutherodactylus wightmanae</td>
<td>EN</td>
</tr>
<tr>
<td>Euproctus platycephalus</td>
<td>EN</td>
</tr>
<tr>
<td>Exerodonta melanomma</td>
<td>VU</td>
</tr>
<tr>
<td>Gastrotheca cornuta</td>
<td>EN</td>
</tr>
<tr>
<td>Gastrotheca guentheri</td>
<td>VU</td>
</tr>
<tr>
<td>Gastrotheca orophylax</td>
<td>EN</td>
</tr>
<tr>
<td>Gastrotheca pipera</td>
<td>LC</td>
</tr>
<tr>
<td>Gastrotheca pseustes</td>
<td>EN</td>
</tr>
<tr>
<td>Gastrotheca splendens</td>
<td>EN</td>
</tr>
<tr>
<td>Heleioporus australiacus</td>
<td>LC</td>
</tr>
<tr>
<td>Hyalinobatrachium fleischmanni</td>
<td>LC</td>
</tr>
<tr>
<td>Hyla bocourtii</td>
<td>CR</td>
</tr>
<tr>
<td>Hylodes dactylocinus</td>
<td>DD</td>
</tr>
<tr>
<td>Hylodes meridionalis</td>
<td>LC</td>
</tr>
<tr>
<td>Hylodes phyllodes</td>
<td>LC</td>
</tr>
<tr>
<td>Hylocistus armatus</td>
<td>LC</td>
</tr>
<tr>
<td>Hylocistus columba</td>
<td>CR</td>
</tr>
<tr>
<td>Hylocistus pantosticu</td>
<td>EN</td>
</tr>
<tr>
<td>Hylocistus ptychodactylus</td>
<td>CR</td>
</tr>
<tr>
<td>Hylocistus torrenticola</td>
<td>VU</td>
</tr>
</tbody>
</table>
Batrachochytrium dendrobatidis

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plectrohyla ameibothalame</td>
<td>DD</td>
</tr>
<tr>
<td>Plectrohyla avia</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla calthula</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla celata</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla charadricona</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla chrysopleura</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla cyanomma</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla dasypus</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla exiguisita</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla guatemalensis</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla hazelae</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla lacertosa</td>
<td>EN</td>
</tr>
<tr>
<td>Plectrohyla mykter</td>
<td>EN</td>
</tr>
<tr>
<td>Plectrohyla penither</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla psiloderma</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla quecchi</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla sabrina</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla siopela</td>
<td>CR</td>
</tr>
<tr>
<td>Plectrohyla teuchestes</td>
<td>CR</td>
</tr>
<tr>
<td>Pleurodema marmoratum</td>
<td>LC</td>
</tr>
<tr>
<td>Pristimantis anotis</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis calcarulatus</td>
<td>CR</td>
</tr>
<tr>
<td>Pristimantis caryophyllaceus</td>
<td>NT</td>
</tr>
<tr>
<td>Pristimantis cremnobates</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis crucifer</td>
<td>EU</td>
</tr>
<tr>
<td>Pristimantis diogenes</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis fallax</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis ginesi</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis ignicolor</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis iorgevelosai</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis lancini</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis lymani</td>
<td>LC</td>
</tr>
<tr>
<td>Pristimantis nigroprisetus</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis prolatus</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis ruedai</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis sanguineus</td>
<td>NT</td>
</tr>
<tr>
<td>Pristimantis scoloblepahas</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis signifer</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis tamsitti</td>
<td>NT</td>
</tr>
<tr>
<td>Pristimantis urchi</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis vicarius</td>
<td>NT</td>
</tr>
<tr>
<td>Prostherapis dunni</td>
<td>CR</td>
</tr>
<tr>
<td>Pseudoeurycea unguidentis</td>
<td>CR</td>
</tr>
<tr>
<td>Pseudophryne pengilieyi</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla acrochorda</td>
<td>DD</td>
</tr>
<tr>
<td>Ptychohyla erythromma</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla legleri</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla arborescendens</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla bistincta</td>
<td>LC</td>
</tr>
<tr>
<td>Ptychohyla calvicollina</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla cembra</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla chryses</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla crassa</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla cyclada</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla ephemera</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla glandulosa</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla hartwegi</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla ixil</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla matudai</td>
<td>VU</td>
</tr>
<tr>
<td>Ptychohyla pachyderma</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla pokomchi</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla pycnochila</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla robertsorum</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla sagorum</td>
<td>EN</td>
</tr>
<tr>
<td>Ptychohyla tecunuman</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla theorectes</td>
<td>CR</td>
</tr>
<tr>
<td>Pristimantis alberci</td>
<td>CR</td>
</tr>
<tr>
<td>Pristimantis bicolor</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis caprifer</td>
<td>LC</td>
</tr>
<tr>
<td>Pristimantis chalcones</td>
<td>LC</td>
</tr>
<tr>
<td>Pristimantis crenunquies</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis diaphonus</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis duellmani</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis fetosus</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis gracilis</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis incanus</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis labiosus</td>
<td>LC</td>
</tr>
<tr>
<td>Pristimantis lichenoides</td>
<td>CR</td>
</tr>
<tr>
<td>Pristimantis molybrignus</td>
<td>NT</td>
</tr>
<tr>
<td>Pristimantis penelopus</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis quinquagessimus</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis sanctaemartae</td>
<td>NT</td>
</tr>
<tr>
<td>Pristimantis savagei</td>
<td>NT</td>
</tr>
<tr>
<td>Pristimantis scolodiscus</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis sulculus</td>
<td>EN</td>
</tr>
<tr>
<td>Pristimantis uranobates</td>
<td>LC</td>
</tr>
<tr>
<td>Pristimantis verecundus</td>
<td>VU</td>
</tr>
<tr>
<td>Pristimantis zophus</td>
<td>EN</td>
</tr>
<tr>
<td>Pseudacris triseriata</td>
<td>LC</td>
</tr>
<tr>
<td>Pseudophryne corroboree</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla CR</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla dendrophasma</td>
<td>CR</td>
</tr>
<tr>
<td>Ptychohyla euthysanota</td>
<td>NT</td>
</tr>
<tr>
<td>Ptychohyla leonhardschulzei</td>
<td>EN</td>
</tr>
</tbody>
</table>
FULL ACCOUNT FOR: *Batrachochytrium dendrobatidis*

Ptychohyla macrotymanum CR
Ptychohyla salvadoriensis EN
Ptychohyla spinipollex EN
Rana muscosa EN
Ranitomeya abdita CR
Rhaebo haematicus LC
Rhinella amabilis CR
Rhinoderma darwini VU
Scinax albicans LC
Silverstoneia nubica NT
Strabomantis cheiroleptus VU
Strabomantis zygodactylus LC
Taudactylus diurnus EX
Taudactylus lieni NT
Taudactylus rheophilus CR
Telmatobius atacamensis CR
Telmatobius bolivianus NT
Telmatobius brevirostris EN
Telmatobius celeorun EN
Telmatobius colanensis EN
Telmatobius culeus CR
Telmatobius degener EN
Telmatobius gigas CR
Telmatobius hocking VU
Telmatobius ignavus EN
Telmatobius Jelskii NT
Telmatobius latrostris EN
Telmatobius mayoloi EN
Telmatobius niger CR
Telmatobius peruvinus VU
Telmatobius pinguecinus DD
Telmatobius platyccephalus EN
Telmatobius scrochii EN
Telmatobius simonsi NT
Telmatobius thompsoni EN
Telmatobius truebae EN
Telmatobius verrucosus VU
Telmatobius yuraceare VU
Thoropa lutzi EN
Thoropa petropolitana VU

Ptychohyla panchoi EN
Ptychohyla sanctaerucis CR
Ptychohyla zophodes DD
Rana sierae EN
Rheophorus margaritifer LC
Rheobatrachus vitellinus EX
Rhinella chrysophora EN
Rhinoderma rufum CR
Scinax heyeri DD
Smilisca cyanosticta NT
Strabomantis necerus VU
Taudactylus acutirostris CR
Taudactylus eungellensis CR
Taudactylus pleione CR
Telmatobius arequipensis VU
Telmatobius atahualpai DD
Telmatobius brevipes EN
Telmatobius carrilae VU
Telmatobius cirrhacelis CR
Telmatobius contrerasi DD
Telmatobius dankoi DD
Telmatobius edaphonastes EN
Telmatobius hauhali VU
Telmatobius hypselocephalus EN
Telmatobius intermedius DD
Telmatobius laticeps EN
Telmatobius marmoratus VU
Telmatobius necopinus EN
Telmatobius pefauri CR
Telmatobius philippi DD
Telmatobius pisanoi EN
Telmatobius schreiteri EN
Telmatobius sibiricus EN
Telmatobius stephani EN
Telmatobius timens DD
Telmatobius vellardi CR
Telmatobius vilamensis DD
Telmatobius zapahuirensis CR
Thoropa miliaris LC
Thoropa saxatilis NT

BIBLIOGRAPHY

55 references found for *Batrachochytrium dendrobatidis*

Management information

Summary: The Amphibian Conservation Action Plan (ACAP) is designed to provide guidance for implementing amphibian conservation and research initiatives at all scales from global down to local.

General information

Summary: Available from: http://www.pnas.org/cgi/content/full/95/15/9031 [Accessed 7 Dec 2004]

Summary: This paper discusses the role of disease in amphibian decline, and the immunological response.

Summary: The Global Amphibian Assessment (GAA) is the first-ever comprehensive assessment of the conservation status of the world’s 5,918 known species of frogs, toads, salamanders, and caecilians. This website presents results of the assessments, including IUCN Red List threat category, range map, ecology information, and other data for every amphibian species.

Johnson, Pieter T.J., 2006. Amphibian diversity: Decimation by disease. Published online before print February 21, 2006, 10.1073/pnas.0600293103

Summary: Available from: http://www.pnas.org/cgi/content/full/103/9/3011 [Accessed 14 August 2006]

[Accessed 03 September 2019]

Norman, R. Undated. Chytrid fungus disease in New Zealand. Massey University Institute of Veterinary, Animal and Biomedical Sciences.

Summary: Article outlining the first case of chytrid fungus in New Zealand.

Summary: B. dendrobatidis differentially affects genotypes between two species of hybridizing leopard frogs (Rana). Hybrid genotypes are more susceptible to infection, and suffer greater reductions in growth and development from the fungus.

Summary: B. dendrobatidis alters the outcome of natural predator - prey dynamics in a larval amphibian - predator system.

Summary: B. dendrobatidis impacts on Hyla larvae may be somewhat ameliorated in a heavy metal (Cu) aquatic environment. Thus, pathogenic effects may be a result of interactions with other aquatic contaminants.

Summary: This paper documents that B. dendrobatidis induces competitive effects in the larval environment between a toad (Bufo) and treefrog (Hyla) species.

Summary: This paper outlines the role of antimicrobial peptides in deterring chytrid infection.

Speare R, Berger L. Chytridiomycosis in amphibians in Australia.

Summary: The pathogen Batrachochytrium dendrobatidis (Bd), which causes the skin disease chytridiomycosis, is one of the few highly virulent fungi in vertebrates and has been implicated in worldwide amphibian declines. However, the mechanism by which Bd causes death has not been determined. We show that Bd infection is associated with pathophysiological changes that lead to mortality in green tree frogs (Litoria caerulea). In diseased individuals, electrolyte transport across the epidermis was inhibited by >50%, plasma sodium and potassium concentrations were respectively reduced by ~20% and ~50%, and asystolic cardiac arrest resulted in death. Because the skin is critical in maintaining amphibian homeostasis, disruption to cutaneous function may be the mechanism by which Bd produces morbidity and mortality across a wide range of phylogenetically distant amphibian taxa

Summary: This article gives details about the first case of chytrid fungus in New Zealand, including possible means of introduction and spread.

Summary: Article outlining the first case of chytrid fungus in New Zealand.

Available from: [Accessed 17 December 2004]

Summary: Article outlining the first case of chytrid fungus in New Zealand.

Available from: [Accessed 17 December 2004]

Summary: Article outlining the first case of chytrid fungus in New Zealand.

Available from: [Accessed 17 December 2004]

Summary: A discussion of the factors involved in the population declines of amphibians in Latin America.