Sirex noctilio

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animalia</td>
<td>Arthropoda</td>
<td>Insecta</td>
<td>Hymenoptera</td>
<td>Siricidae</td>
</tr>
</tbody>
</table>

Common name

Sirex noctilio (or *Sirex woodwasp*) is a high risk invasive species native to Europe and parts of Asia that has proven devastating to many commercial pine plantations, with mortality rates as high as 80%. It is capable of inflicting billions of dollars in damages. International, national and state agencies have conducted much research on *Sirex noctilio* and remain focused on its control and containment.

Synonym

Similar species

Summary

Sirex noctilio is a Siricid woodwasp, or Horntail. Adults have a long cylindrical body lacking the typical narrow petiole "waist", two sets of transparent wings, and a spear-shaped plate (cornus) at its tail. Females are generally larger measuring about 15-35mm long, having a metallic blue head and body, orange legs, and a pointed projection at the tail to protect the ovipositor. Males measure about 13-32mm and have a metallic blue head and thorax, an orange abdomen with a dark tip, and orange front and thickened, black rear legs. Larvae are creamy white with a cylindrical body, identifiable head, three pairs of short legs and a spine at the posterior end (Zondag, 1977; King, 2005).

Please see PaDIL (Pests and Diseases Image Library) Species Content Page **Wasps: Sirex woodwasp** for high quality diagnostic and overview images.
Lifecycle Stages
Eggs of *Sirex noctilio* are deposited in shafts drilled into the xylem of the host tree, along with a toxic mucus and arthrospores of the symbiotic fungus *Amylostereum areolatum* by female adults. Females excrete the mucus from glands and release arthrospores from their mycangium, pockets on either side of the fold between the first and second abdominal segments which carry the symbiotic fungal spores. They both travel down to the ovipositor where they are placed in the tree along with eggs. Female larva also possess these spores. Optimal eclosion (hatching) occurs after 10-12 days at about 25° C. Exposure to carbon dioxide, which is produced by the fungus, is shown to accelerated development and emergence from the egg. Larvae emerge and feed on the fungal mycelium by secreting saliva that dissolves nutrients so they may be ingested. They bore galleries throughout the tree leaving frass (waste) behind. *S. noctilio* typically goes through six or seven larval instars (phases), but they may have 5-12. The first instar moves about a centimeter up. In the second, they acquire mycelium nutrients and store it in hypopleural organs. By the end of the third, it will only have moved about 2cm. The fourth and fifth instars turn towards the heartwood at the center of the tree boring its way up a meandering path. It eventually turns toward the surface to pupate. The final gallery is usually about 12-15cm long. Natural development of most larvae takes 10-11 months, and mature larvae pupate close to the barks surface, emerging about 3 weeks later through holes about 3-7mm in diameter. About 25% of larvae don't emerge until the next season, taking two years to develop. Adults emerge sexually mature, males emerging first. Adults live a maximum of 12 days surviving on stored fat. Often, actively ovipositing females live only 3-4 days. (Madden, 1981; Haugen, 2005; Zondag, 1977, Borchert, 2006).

Habitat Description
The female sirex woodwasp bores deep into living trees and deposits eggs with its ovipositor along with a symbiont fungus (*Amylostereum areolatum*) and toxic mucus. The mucus inhibits the defences of the tree, allowing the white rot fungus to grow. The larvae then bore galleries throughout the tree, feeding on the fungus. *Sirex noctilio* is primarily attracted to stressed, sick, and suppressed trees with intermediate moisture content. Some softwoods (conifers) and all species of pine are believed to be at risk of infestation (Madden, 1974; Madden, 1981; NYSDEC, 2007).

Reproduction
Oviparous. Sexual, and facultative parthenogenetic. Mating of *Sirex noctilio* occurs in upper tree branches where males swarm on suitable days, which consists of temperatures of at least above 14° C, preferably above 30° C, sunny with intermediate to low humidity. This swarming behaviour by males is triggered by contact with other males and the presence of females. Individual females lay between 25-450 eggs. Mated females produce both male and female progeny, while unmated females yield only males. The typical ratio of males to females is approximately 10:1 (Morgan, 1968; Haugen, 2005). However sex ratio can vary greatly from almost 1:1 to well over 20:1 of males to females. It is possibly influenced by how established *Sirex* is in a particular area, but more work is needed to explain the major variation (B. Hurley, pers. comm.).
Nutrition

Sirex noctilio larvae feed on a symbiotic fungus _Amylostereum areolatum_ placed in host trees by ovipositing females. A phytotoxic fungus dries and kills tree cells allowing _A. areolatum_ to spread. Larvae feed on this fungus throughout its normally one year developmental cycle. Adults do not feed but live off of stored fat, living only long enough to reproduce (Zondag, 1977).

General Impacts

Sirex noctilio along with its obligate symbiotic fungus _Amylostereum areolatum_ pose a serious threat to the pine industry. It has been known to devastate pine stands causing as much as 80% mortality. The USDA Animal and Plant Health Inspection Service (APHIS) added _S. noctilio_ to its Regulated Plant Pest List and it was rated a "very high risk" pest in pest risk assessment for North America. In its native ranges, _S. noctilio_ is considered a secondary pest. Expansive monoculture tree plantations, favourable climate, and lack of natural predators and hyperparasites render invasive ranges highly susceptible to infestation. The sirex woodwasp lays its larvae in conifers primarily _Pinus_ spp., along with its symbiotic fungus _A. areolatum_ and a toxic mucus which facilitates the growth of the fungus. The mucus causes foliage to wilt and yellow, providing good conditions for _A. areolatum_ to grow and spread throughout the tree. The fungus causes the tree to dry out by disrupting water movement. The combined effect of the mucous and fungus most often kills the tree. Even if the host tree survives, its wood is often degraded value because of resin accumulations or killed zones. Healthy trees are known to resist oviposition by flooding holes with resin or by producing polyphenols that prevent fungal growth. Understandably, ovipositing _S. noctilio_ females prefer stressed trees. Research indicates that their sensillae, inner surfaces of the valvulae (sensory receptors on the ovipositor) are capable of determining the tree's levels of resin and moisture content. As they prefer intermediate to low moisture and will withdraw their ovipositor if they pierce a resin duct. _S. noctilio_ almost always attacks trees stressed by factors such as drought, overcrowding, physical damage, unrelated fungal infection, or simply inundation with other ovipositions. Infested trees are identifiable by yellow or reddish-brown tree crowns, beads of resin dripping down the bark from oviposition sites, larval tunnels and frass in the wood, and exit holes 3-8mm in diameter. All species of _Pinus_ are considered viable hosts as well as some members of genera _Abies_, _Larix_, _Picea_, and _Pseudotsuga_. Notable host species include: Monterey pine (_Pinus radiata_), loblolly pine (_Pinus taeda_), slash pine (_Pinus elliottii_), Scots pine (_Pinus sylvestris_), Austrian pine (_Pinus nigra_), maritime pine (_Pinus pinaster_), Eastern white pine (_Pinus strobus_), ponderosa pine (_Pinus ponderosa_), red pine (_Pinus resinosa_), Mexican pine (_Pinus patula_), jack pine (_Pinus banksiana_), Caribbean pine (_Pinus caribaea_), lodgepole pine (_Pinus contorta_), shortleaf pine (_Pinus echinata_), longleaf pine (see _Pinus palustris_ in IUCN Red List of Threatened Species), pitch pine (_Pinus rigida_), Jeffrey pine (_Pinus jeffreyi_), and Chiapas white pine (_Pinus chiapensis_) (Zondag, 1977; APHIS, 2007; Bean, 2005; Morgan, 1968; Wingfield, 2001; Pollard, 2006).
Management Info

Preventative measures: *Sirex noctilio* is a high risk invasive species and many actions have been taken to prevent its spread. Restrictions on the movement of timber and firewood have been imposed in most invasive ranges. The USDA APHIS (Animal and Plant Health Inspection Service) inspectors remain vigilant and have successfully intercepted foreign siricids in international US ports on over 100 occasions. APHIS also has a Plant Protection and Quarantine (PPQ) division which is working hard to prevent further spread in the US by informing the public and wood industry and conducting extensive trapping surveys.

In 2002, United Nation FAO's (Food and Agriculture Organization) Interim Commission on Phytosanitary Measures imposed a global standard for treating wood packaging *International Standard for Phytosanitary Measures No. 15* to stop the spread of invasives including *S. noctilio*. Although, implementation has proven difficult. Similarly, New York State the Department of Conservation has imposed recommended treatment protocols for all wood products over 2.5cm thick. Silvicultural management is another important means of preventing *S. noctilio* infestation. Since, the Sirex woodwasp attacks stressed trees, healthy and vigorous trees properly maintained by good silviculture practice, including routine surveillance, pruning, and appropriate watering and spacing of trees, will assist in preventing new infestations and to control present populations. Recently, aerial multispecteral imaging technology has been employed to detect infected trees in large pine plantations of KwaZulu-Natal, South Africa. Another use of technology employs computer modeling by programs like CLIMEX to render a predictive modeling of potential invasive ranges (Hoebeke, 2005; NAPPO, 2007; Keiran, 2005; NYSDEC, 2006; Fernandez-Ahrex, 2005; Ismail, 2007; Carnegie, 2006).

Biological: Biological control agents have been the most popular and successful means of managing *Sirex noctilio*. Many species of parasitic wasps have been employed including: *Megarhyssa nortoni*, *Rhyssa persuasoria*, *Rhyssa hoferi*, *Ibalia leucospoides*, and *Schlettererius cinctipes*. Of these *M. nortoni*, *R. persuasoria*, and *I. leucospoides* have been the most effective, employed in New Zealand, Australia, South America, and South Africa. These wasps find *S. noctilio* larvae, then bore into the tree, paralyze them, and deposit their eggs on them. Sirex larvae are then consumed by the newly hatched parasite larvae. However, the most effective means of control has been from parasitic nematode *Deladenus siricidicola* (also =*Beddingia*). This nematode has an almost perfectly designed life cycle to control Sirex woodwasps. Its first stage feeds on fungus *Amylostereum areolatum* while the second invades the larvae collecting in their reproductive organs. Females are sterilized while males spread the nematode further. This agent has been successful in South America, South Africa, Australia, and especially New Zealand in which few *S. noctilio* remain. The US is currently in experimental phases of introduction. The nematode may be raised in laboratory conditions and trees are inoculated with a gel medium in which they are suspended (Hurley, 2007; Haugen, 2005; Hocking, 1968; Bain, 2005; Bedding, 1974; SSPR, 2006).

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: Sirex noctilio

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review: Brett P. Hurley, Forestry and Agricultural Biotechnology Institute (FABI) University of Pretoria, South Africa

Publication date: 2017-11-23

ALIEN RANGE

[1] SOUTH AFRICA [5] UNITED STATES
[1] URUGUAY

BIBLIOGRAPHY

39 references found for Sirex noctilio

Management information

Summary: This is a publications summarizing Sirex noctilio s presence in New Zealand.

Summary: A journal article describing the use of nematode Deladenus Siricidcola in the biological control of Sirex noctilio in Australia.

Summary: This journal article uses computer programs like CLIMEX to identify potential Sirex noctilio invasive ranges.

FABI. The Sirex Website [Accessed January 27, 2010]

Summary: A detailed website containing literature and links to the latest information on the biology and control of Sirex noctilio.

Summary: This journal article examines the wasp parasite Ibalia leucospoides and its interaction with host Sirex noctilio Available from: http://www.fabinet.up.ac.za/pdfs/SirexLIT/Fernandez-Arhex&Corley2005BioconSciTech.pdf [Accessed 17 October 2007]

Summary: A pest alert advisory on Sirex noctilio published by the Northeastern Area USDA Forest Service.

Summary: A journal article concerning Certhonotus tasmaniensis parasitizing Sirex noctilio in Tasmania.

Summary: This journal article provides information on the parasitization of Rhysya persuasoria on Sirex noctilio.

Summary: This is an excellent source detailing available information concerning Sirex noctilio and its introductions to invasive ranges in the southern hemisphere.

Thayer, C.L. 2007. *Amylostereum areolatum (Fr.) Boidin Sirex-Fungus Pest Fact Sheet.* APHIS Centerfor Plant Health Science and Technology.

Summary: This a good source focused on *Amylostereum areolatum* detailing its relationship with Syrex noctilioand some of their parasites.

Summary: A report updating the statuses and presence of *Sirex noctilio* in New York State.

Summary: A profile on *Sirex noctilio* by the Ontario Ministry of Natural Resources.

Summary: 1) Production of high quality images showing primarily exotic targeted organisms of plant health concern to Australia. 2) Assist with plant health diagnostics in all areas, from initial to high level. 3) Capacity building for diagnostics in plant health, including linkage developments between training and research organisations. 4) Create and use educational tools for training undergraduates/postgraduates. 5) Engender public awareness about plant health concerns in Australia.

General information

Bean, Dick. 2005. The European wood wasp, Sirex noctilio, is the January Invader of the Month. Maryland Department of Agriculture.

Summary: This source is part of an Invader of the Month series containing good information about *Sirex noctilio.*

Borchert, Daniel. 2006. Organism pest risk analysis: risks to the conterminous United States associated with the woodwasp, Sirex noctilio Fabricius, and the symbiotic fungus, Amylostereum areolatum (Fries:Fries) Boidin. USDA-APHIS-PPQ-CPHST-PERAL

Summary: A publication of risk assessment in the US by the USDA APHIS Plant Protection and Quarantine division.
Summary: A brief profile containing good pictures of *Sirex noctilio*.

Summary: English:

The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page.

Invasive species - insects is available from:

Spanish:

La lista de especies del Sistema de informaci?n sobre especies invasoras de m?xico cuenta actualmente con informaci?n de nombre cient?fico, familia, grupo y nombre com?n, as? como h?bitat, estado de la invasi?n en M?xico, rutas de introducci?n y lugares a otros sitios especializados. Algunas de las especies de mayor riesgo ya tienen una liga directa a la p?agina de alertas. Es importante resaltar que estas listas se encuentran en constante proceso de actualizaci?n, por favor consulte la portada (http://www.conabio.gob.mx/invasoras/index.php?Portada), en la secci?n de novedades, para conocer los cambios.

Especies invasoras - Insectos is available from:

Crop Protection Compendium. Undated. *Sirex noctilio Fabricius, 1973.*

Summary: A comprehensive list of common names accessed through CABI Compendium.

Available from: http://www.cabicompendium.org/NamesLists/CPC/Full/SIRXNO.htm [Accessed 16 October 2007]

Davies, R.K. 2006. *Sirex woodwasp letter to the forest products industry and recommended protocols. New York State Department of Environmental Conservation.*

Summary: This is a letter from the director of the Division of Lands and Forests of the New York State Department of Environmental Conservation to forest products companies urging precautions to control *Sirex noctilio*.

Summary: Letters written by the APHIS PPQ Deputy Administrator advising the SPRO of updates concerning *Sirex noctilio*.

Summary: A brief profile on *Sirex noctilio* by Queensland’s Department of Primary Industries and Fisheries.

Summary: This journal article offers a detailed description on oviposition and reproduction of *Sirex noctilio*.

Summary: This journal article offers in detail the oviposition and life cycle of *Sirex noctilio*.

McCullough, D.G. New invasive woodwasp - let s wait and see?. Landscape Alert Newsletter. Integrated Pest Management Resources, Michigan State University.

Summary: Newsletter publication by the Integrated Pest Management Resources of Michigan State describing the capture of a *Sirex noctilio* specimen in Michigan.

Summary: This is a publication containing good information regarding many members of Siricidae.

Summary: Pest report updating presence of *Sirex noctilio* in Canada.

Summary: This journal article is focused on the effects of Sirex noctilio's symbiote fungus Amylostereum areolatum in South Africa.

Summary: A detailed study of parasitization of Sirex noctilio by Schlettererius cinctipes.

Summary: This journal article investigates the impact of different fungi on timber, including Amylostereum areolatum and symbiote Sirex noctilio.
