Global Invasive Species Database

FULL ACCOUNT FOR: Miscanthus sinensis

<table>
<thead>
<tr>
<th>Miscanthus sinensis</th>
<th>简体中文</th>
<th>正体中文</th>
</tr>
</thead>
<tbody>
<tr>
<td>System: Terrestrial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kingdom</th>
<th>Phylum</th>
<th>Class</th>
<th>Order</th>
<th>Family</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantae</td>
<td>Magnoliophyta</td>
<td>Liliopsida</td>
<td>Cyperales</td>
<td>Poaceae</td>
</tr>
</tbody>
</table>

Common name
plume grass (English), maiden grass (English), eulalia (English, Australia), pampas grass (English), Japanese silver grass (English), Chinese silver grass (English), Gemeines Chinaschilf (German, Germany), eulalia grass (English), Chinese fairy grass (English, Germany), Chinesisches Stielbluetengras (German), zebra grass (English), prachtriet (English, Netherlands), miscanthus (English), susuki (Japanese, Japan), Schilfras (German, Germany)

Synonym
Eulalia japonica, Trin.
Miscanthus condensatus, Hack.
Miscanthus purpurascens, Anderss.
Miscanthus sinensis, var. condensatus (Hack) Makino
Miscanthus sinensis, var. formosanus Hack.
Miscanthus sinensis, f. glaber Honda
Miscanthus sinensis, var. gracillimus Hitchc.
Miscanthus sinensis, var. purpurascens (Anderson) Matsum.
Miscanthus sinensis, var. variegatus Beal
Miscanthus sinensis, var. zebrinus Beal
Saccharum japonicum, Thunb.
Xiphagrostis condensatus, (Hack) W. Wight

Similar species
Saccharum giganteum, Miscanthus sacchariflorus, Andropogon gerardii

Summary
Originally introduced from Asia in the nursery trade, Miscanthus sinensis is one of the most common ornamental plants. Its height and fast growth enable it to eclipse native vegetation growing close to the soil surface. Although it has not caused as much damage as some invasive grasses, its ability to inhabit disturbed areas and its popularity as an ornamental species make it a serious threat to native flora.

[view this species on IUCN Red List]
Species Description

Miscanthus sinensis is a robust perennial plant that can reach up to 3m (10 feet) in height. It is usually found in large clumps. It consists of long arching branches and leaves that spread or droop. The leaves can be up to a metre (3 feet) long and 25mm (1 inch) wide. Each leaf has a silvery-white midrib with sharp tips that are re-curving. (USDA Forest Service, 2006). Mature plants have large, showy, feather-like flowers appearing in Sept.-Oct. It has very short, inconspicuous rhizomes. (Meyer, 2003(a)). Pinkish-silvery 8-10” plumes remain into the winter. *M. sinensis* turns a rich golden brown in the winter and the colour persists throughout the season. (Gilman, 1999).

"The fan-shaped terminal panicle is 15cms to 60cms (6 to 24 inches) long and can be silvery to pale pink in colour. The branches of the panicle are erect or ascending. These panicles reach full maturity in the fall. The glabrous spikelets are very small, yellow-brown in colour and encircled at the base with white or purple-coloured hairs. The fertile lemma contains an awn that is spirally twisted at its base." (USDA Forest Service, 2006). The seeds are yellowish brown to slightly reddish, sparsely hairy, and have a twisted tip. They occur from September to January and have membranous husks with a hidden grain. (Miller, 2003)

Uses

Miscanthus sinensis is most commonly used as an ornamental plant. (ARS-GRIN, 2005). As an ornamental, it is used as a mass planter, yard border, privacy screen, container or above-ground planter, or as an accent. (Gilman, 1999). It has the potential to be used as biomass for energy production. (ARS-GRIN, 2005). The flowers of *M. sinensis* can be used for dyeing. (MSUE, 1999). *M. sinensis* has been found to slow runoff in areas with concentrated flow erosion from agricultural fields. After 4 years, researchers found that *M. sinensis* had 20cms to 38cms (8-15 inches) of sedimentation deposits above the plants. (Ritchie et al, 2006). *M. sinensis* is appreciated for its winter appearance, including: persistent fruits, a showy trunk, and an overall golden brown colour. (Gilman, 1999).

Habitat Description

Miscanthus sinensis can adapt to several different habitats, but prefers rich, moist, well-drained soil to attain maximum growth potential. (The Bugwood Network et al, 2003). Plants can tolerate cold climates, but do not grow well in humid, hot southern climates. Horticulturalists claim that the plant can live between USDA hardiness zones 5-9, able to survive temperatures as low as -26°C (-14.8 F). (USDA Forest Service, 2006). Once established, *M. sinensis* can tolerate a variety of poor conditions, including soils of various pH, compacted soils, nutrient poor soils, heat, and drought. (OSU, undated). The plant doesn’t survive in soil with a high salt content. (Gilman, 1999) *M. sinensis* is intolerant of shade but can be found in sparsely forested areas and small sunlit openings. Common in many natural and disturbed areas, *M. sinensis* is often found on abandoned home sites, roadsides, forest edges, sides of reservoirs, and in old fields following fires. (The Bugwood Network et al, 2003).

Reproduction

Miscanthus sinensis reproduces primarily through rhizomes, however it does make seeds which are mainly dispersed by wind. (USDA Forest Service, 2006). Large buildup of seeds in seed banks can also lead to further establishment of *M. sinensis*. (Meyer, 2003(a)).
General Impacts
D’Antonio and Vitousek (1992) report that fast growing grasses (M. sinensis) can reduce the photosynthetic capability of competitors by reducing light availability at the soil surface. In Japan, M. sinensis colonized abandoned fields, reducing the regeneration or encroachment of oak seeds by reducing the light availability and daily carbon gain by oak seedlings. M. sinensis is known to carry several pathogens, including barley yellow dwarf luteovirus-MAV, barley yellow dwarf luteovirus-PAV, and cereal yellow dwarf luteovirus. (Harris et al, 2000).

Management Info
Physical: Digging out the root system, especially the entire rhizome, is a proven method for removing individual plants. (Meyer, 2003(a)). USDA Forest Service (2006) warns that digging out plants will probably result in resprouts and would need further treatment. Cutting and disking methods may also result in increased dispersal due to rhizome pieces that are cast into uninhabited areas. Meyer (2003(a)) also recommends looking for flowers in the fall and removing them early to eliminate self-seeding. Removing the seed head also helps curb seed bank deposits and control plant spread. (Meyer, 2003(a)). Repeated mowing, as short as possible throughout the summer may kill M. sinensis in as few as 2 seasons. Areas with a larger seed bank will take longer. M. sinensis cannot tolerate repeated mowing during growth season, however, dormant stage cutting of plants may increase growth if cuttings are removed. Grazing has proved to be a successful management tool in Japan, stopping the plant’s growth by allowing cattle, horses, and sheep to graze on M. sinensis in the beginning of June. Burning increases growth, vigor, and seedset of M. sinensis. “Burning should only be done as a management practice when it can be followed by chemical control.” (Meyer, 2003(a)). Proposed ideas to develop sterile forms of M. sinensis could be a great solution to the green industry and for commercial selling of plants. (Li et al, 2004).

Chemical/Mechanical: Late winter/early spring: remove previous year’s growth by cutting or burning entire plant to ground. This enables higher chemical control efficiency. When growth is 12” tall, spray with glyphosate (Meyer, 2003(a)) or imazapyr. (USDA Forest Service, 2006). Allow the plant to die and cut dead foliage back to ground. If previous year’s growth still exists, wait until plant reaches 12-24” prior to spraying. Repeat spraying if necessary in late summer or fall when regrowth is 12” tall. An abundant amount of green foliage is necessary for effective chemical control. (Meyer, 2003(a)). Miller (2003) recommends Arsenal AC as a one percent solution for control of M. sinensis, or a combination of glyphosate and arsenal AC. In the fall, a 2% solution of Roundup or 1% solution of fusilade should be effective against M. sinensis. In the spring, apply a 4% solution of Roundup or 2% solution of fusilade. (Morisawa, 1999).

M. sinensis can tolerate a high intensity of salt spray at an inland position. In one study, the salt spray combined with sandblasting limited the establishment of many grasses to the dune and beach area. Sandblasting was found to regulate the establishment of M. sinensis near beaches. (Yura & Ogura, 2006).

Pathway
M. sinensis was introduced from Asia about a century ago for ornamental plantings. (Swearingen et al, 2002)

Principal source:
Full account for: *Miscanthus sinensis*

Compiler: National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG)

Review:

Publication date: 2011-02-17

Alien Range

<table>
<thead>
<tr>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>[2] Australia</td>
</tr>
<tr>
<td>[28] United States</td>
</tr>
</tbody>
</table>

Bibliography

25 references found for *Miscanthus sinensis*

Management information

Summary: A fact sheet with a good description of plant characteristics and management information.

Summary: Good management information.

Summary: A fact sheet with a good description of plant characteristics and management information.

Summary: Excellent source for management information.

Summary: Includes information on prevention, management, and alternative plants.

Summary: Includes information on prevention, management, and alternative plants.

The Bugwood Network, USDA Forest Service & USDA APHIS PPQ. The University of Georgia - Warnell School of Forest Resources and College of Agricultural and Environmental Sciences-Department of Entomology. 2003. *Southeast Exotic Pest Plant Council Invasive Plant Manual*. Invasive Plants of the Eastern United States.

Summary: Includes plant description and management information.

Summary: Habitat, management, and plant description information.

General information

Summary: English: The species list sheet for the Mexican information system on invasive species currently provides information related to Scientific names, family, group and common names, as well as habitat, status of invasion in Mexico, pathways of introduction and links to other specialised websites. Some of the higher risk species already have a direct link to the alert page. It is important to notice that these lists are constantly being updated, please refer to the main page (http://www.conabio.gob.mx/invasoras/index.php/Portada), under the section Novedades for information on updates.

Spanish: La lista de especies del Sistema de información sobre especies invasoras de México cuenta actualmente con información acerca de nombre científico, familia, grupo y nombre común, así como h?bitat, estado de la invasión en México, rutas de introducción y ligas a otros sitios especializados. Algunas de las especies de mayor riesgo ya tienen una lista directa a la página de alertas. Es importante resaltar que estas listas se encuentran en constante proceso de actualización, por favor consulte la portada (http://www.conabio.gob.mx/invasoras/index.php/Portada), en la sección de novedades, para conocer los cambios.

Summary: This paper briefly discusses some of the general impacts of *M. sinensis*.

Summary: Includes general information about *M. sinensis*, and gives a number of common names.

Summary: Gave information about Connecticut, U.S. s labeling of *M. sinensis* as a potentially invasive species.

Ma, Q. Undated. The University of Tennessee Herbarium-TENN. TENN Vascular Plants-Database Results. Monocots: Poaceae

Summary: This abstract explains how *M. sinensis* has been used to stop erosion from agricultural fields. Available from: http://md1.csa.com/partners/viewrecord.php?request=gs&collection=ENV&recid=4269099&q=miscanthus+sinensis&uid =1076031&setcookie=yes [Accessed 27 November 2006]

Summary: Discussed the presence of *M. sinensis* in Sydney, Australia.

Summary: Explains and states the ranking of exotic plants in Tennessee.

Summary: Discussed the ecological factors limiting *M. sinensis* to inland ecosystems.