Acridotheres tristis

Common name

- house myna (English)
- common myna (English)
- Calcutta myna (English)
- mynah (English)
- Hirtenmaina (German)
- German Indischer mynah (English)
- manu rataro (English, Cook Islands)
- manu kavamani (English, Cook Islands)
- manu teve (English, Cook Islands)
- piri (English, Cook Islands)
- manu kaomani (English, Cook Islands)
- manu (English, Cook Islands)
- talking myna (English)
- Martin triste (French)
- Indian mynah (English)
- Indian myna (English)

Synonym

Acridotheres tristas, (Linnaeus, 1766)

Similar species

Manorina melanocephala, Manorina flavigula

Summary

The common myna (Acridotheres tristis), also called the Indian myna, is a highly commensal Passerine that lives in close association with humans. It competes with small mammals and bird for nesting hollows and on some islands, such as Hawaii and Fiji, it preys on other birds’ eggs and chicks. It presents a threat to indigenous biota, particularly parrots and other birdlife, in Australia and elsewhere.

view this species on IUCN Red List
Species Description
Indian mynas are 23 to 26 cm long, weigh 82 to 143 g and have a wing-span of 120 to 142 mm (Markula Hannan-Jones & Csurhes 2009). The common myna has a medium to heavy build and a cocoa brown colour (Massam 2001). The head, neck and upper breast of the adult is glossy black, while the undertail coverts, tail tip and the outer feathers are white (Massam 2001). The white feathers can be seen most clearly when the bird is in flight. The bill, legs and feet are bright yellow, while the adult iris is reddish brown to brownish yellow in colour (Massam 2001). Male and female A. tristis are not clearly sexually dimorphic and are thus difficult to identify in the field (Counsilman Nee Jalil and Keng 1994).

Mynas are distinctive birds in that they move about in a walk rather than a hop. Like most territorial birds they have a bout of intense calling in the early morning that lasts between 5 and 15 minutes. Males call more often than the females, and pairs sometimes duet. The territorial call is a rowdy medley of creaky notes, growls, rattles, raucous, gurgling, chattering and bell-like sounds in rapid sequence often strung together as a song. Adults with young utter harsh squarking noises and young learning to fly emit persistent "chi-chi-chis". At their communal roosts mynas maintain a noisy chattering, even well after nightfall and before dawn. To hear samples of the common myna call please go to: Tidemann, C. 2007b. Common Indian Myna Website > Identifying Mynas.

Notes
Mynas in India are regarded as symbols of undying love, because they often pair for life. In India maina is used as a term of endearment for young girls (Tidemann 2007c). The common myna is highly intelligent and acquires a fear response; it learns about an area in which it observes another individual experience an aversive event, namely capture by a human. This obviously has implications for management and control (Griffin & Boyce 2009).

Lifecycle Stages
The female myna incubates her eggs for 13 to 14 days. The fledging period lasts between 20 to 32 days, averaging 25 days. Parents feed the chicks as long as three weeks after they have left the nest (Massam 2001). Sexual maturity occurs at nine to 12 months. Juveniles form small flocks and may form mating pairs at as young as nine months old although few breed in their first year. Life span is an average of four years in the wild, possibly up to 12 years for some individuals (Markula Hannan-Jones & Csurhes 2009).

Uses
In India the common myna is referred to as the farmer’s friend because it protects crops by feeding on insect pests. In fact the myna has been deliberately introduced to continental landmasses and islands with warm temperate to tropical climates ostensibly to control invertebrate pests (Case 1996, Veltman et al. 1996, Feare & Craig 1998). Many myna species are accomplished mimics and can be taught to speak; for this reason the myna is a much sought-after pet in some parts of the world (Tidemann 2005), in Mallorca, Spain, several pet birds have escaped or been released into the wild.
Habitat Description
Common mynas are found in both tropical and temperate regions, from the tropics to southern Europe (Russia) and as far up as northern France (Feare 1998). They are able to adapt to a wide range of climates and habitats. They inhabit flood plains, grasslands, cultivated areas, plantations, as well as desert oases and foothills of various mountainous ranges (Feare and Craig, 1999). However, in general, the common myna reaches the highest densities in modified habitats near human establishments, including cities, towns, villages, farmland, rural dwellings, parks, gardens and roadsides (Gill 1999; Heather & Robertson 2000). The common myna evolved in open woodland habitats in India (Sengupta 1968, in Pell & Tidemann 1997) and is said to prefer anthropogenically modified woodland in Australia (Tidemann 2007e).

The common myna is good at adapting to local environments. For example, in Fiji it congregates on the seashore feeding off crustaceans and other stranded sealife and has even colonised a small coral island. In Singapore it is strongly associated with the rural landscape, for example, agricultural and farm areas (Lim Sodhi Brook and Soh 2003). In Australia mynas prefer reserve habitats, especially the perimeters (Pell and Tidemann 1997). While reserves provide excellent environs for the myna in Australia and stimulate large numbers of mynas during the breeding season, during the winter months mynas find refuge in the surrounding suburban areas (Pell and Tidemann 1997).

The common myna prefers warmer climates. For example, in New Zealand, it tends to avoid colder regions in the south such as Nelson; but interestingly it does establish stable populations near piggery sheds where sufficient heat is produced by the pigs to maintain a relatively high temperature; in addition there is an abundance of pig food available (P.R. Wilson Pers. Comm.). The common myna prefers to forage in open, grassy habitats (Crisp and Lill 2006, in Newey 2007), either in groups or alone, and roost in isolated stands of tall trees. In Singapore, it commonly roosts among monoclonal stands of tall densely canopied trees (Hails 1985; Yap et al. 2002). In Fiji, less densely canopied trees such as coconut palms are chosen by the adaptable bird for roosting and refuge (Stoner 1923).

Reproduction
The common myna stays in the same pair and maintains the same territory each year. It builds a cup-shaped nest out of dry grass, twigs and leaves and may construct its nest in a tree hollow, cliffside, building or thick vegetation. The common myna usually raises two broods per season, laying up to six pale greenish-blue eggs (3.1cm x 2.2cm; Massam 2001) in each brood, with an average of four. Both sexes brood and care for the young (Massam 2001). In New Zealand they lay eggs from mid-October to early March, with the highest egg-laying activity occurring from November to January. In Australia up to three broods of young may be produced in one season. Both sexes brood and care for the young (Massam 2001).
Nutrition
Common mynas are omnivorous scavengers and will feed on fruits, berries, grains, flower nectar, insects (including beetle larvae and adults, caterpillars, worms, flies, snails) and spiders. Nestlings are fed for the first ten days exclusively on invertebrates, primarily insects (Markula Hannan-Jones & Csurhes 2009). When insects are scarce, fruits and seeds make up a more important component of their diet (Peacock van Renburg & Robertson 2007). At such times, common mynas can become agricultural pests (Peacock van Renburg & Robertson 2007), feeding on the ripening fruit and seeds of plants such as figs, papaya, dates, apple, pear, tomato, and cereal crops such as maize, wheat and rice. Mynas are egg predators (Feare & Craig 1998), and are known to consume birds' eggs and chicks, as well as small reptiles.

Common mynas are highly adaptable to human habitations (Sontag & Louette 2007) and local food resources. For example, they have been known to consume pet food (Australian Museum 2003) and forage on the seashore for worms, molluscs, crustaceans and other seafood stranded on the mud flats (Stoner 1923). They also scavenge rubbish dumps, pastures, farmyards and roads for roadkill.

They are predominantly ground feeders, pecking prey from the surface in short pasture and grain stubble, but will opportunistically feed in flowering or fruiting trees and bushes (Feare and Craig 1999). In their native range of southern Asia the myna forms flocks in rural areas, which feast on insects and grubs turned up in the cultivated soil by the plough (Australian Museum 2003).

General Impacts
Flocks of the common myna are known to damage fruit crops, including grapes, apricots, apples, pears, strawberries, figs and gooseberries. (Heather and Robertson 1997).

Mynas are communal and commensal, they are highly vocal throughout the year, making them a public nuisance. Their droppings are a nuisance (Yap et al. 20002, in Lim Sodhi Brook and Soh 2003) and public health concern. Mynas form combined populations of up to 160 000 (Lim Sodhi Brook and Soh 2003) and roost in numbers as great as 5000 (Markula Hannan-Jones & Csurhes 2009). They are a residential nuisance as they build nests in spouting and drainpipes (Stoner 1923). Mynas fearlessly steal food off plates which may be a hygiene or general nuisance for restaurants and other shops and scavenge food from people’s houses and gardens.

Common mynas pose a human health risk as they carry bird mites such as Ornithonyssus bursa and Dermanyssus gallinae that may infect humans. They can also cause dermatitis, asthma, severe irritation and rashes. Their droppings can spread Psittacosis, Ornithosis, Salmonellosis and arboviruses (Pers. comm. Bill Handke). They may also carry owl flies, biting lice, Oxyspirura thread worm and round worm (Stoner 1923). Mynas are known to carry avian malaria (Massam 2001).

The common myna has been implicated in the demise of the lowland populations of the 'Vulnerable (VU)' Rarotonga starling (Aplonis cinerascens) (BirdLife International 2008b). Mynas are nest site competitors and can displace active breeding pairs of the Endangered (EN) Mauritius parakeet (Psittacula eques). In French Polynesia they are reported to predate on the Critically Endangered (CR) (Todiramphus godfreyi). Please follow this link for more examples of the impacts of common mynas on threatened species.
Management Info

Preventative measures: Risk assessment models by the Bureau of Rural Sciences, Australia, classifies the common myna in the highest threat category (Bomford 2003). The common myna is prohibited in Western Australia (Massam 2001).

A Pest Animal Risk Assessment using a numerical risk assessment system developed by Bomford (2006) was carried out by the State of Queensland, Department of Employment, Economic Development and Innovation, in 2009. Indian mynas in Queensland were assessed as an ‘extreme’ threat species. See Markula et al 2009

Physical: Foraging traps are very useful for the control of small myna populations if poisoning is not an option. The Tindall Trap and the Tidemann Trap have been used successfully in New Zealand and Australia, respectively. The Decoy Trap, Kadavu Trap, Larsen Trap, Rat snap-trap and other foraging traps have also been used for trapping myna birds with less success. Please follow this link to view a Trapping Mynas and Tidemann, C. 2007g. Common Indian Myna Website > Humane Disposal.

Chemical: Starlacide DRC1339 has been used against mynas and is effective where there are no non-target species issues. Alphachloralose paste is used for temporary local control of mynas in cooler climates. For more information on the use of these toxins please see NZFSA. Undated. DRC 1339 For Bird Control and Nelson. 1994. Bird Control in New Zealand Using Alpha-Chloralose and DRC1339.

Integrated Pest Management: As invasive bird species are frequently associated with human modified environments IPM is an appropriate strategy (Lim Sodhi Brook and Soh 2003). Long term management practices may include habitat modification, resource limitation and public education. Restricting food available to the myna is difficult as it has such a variable diet (Thomas 2004).

The need to raise public awareness is important part of IPM. Envirotalk Australia has a forum discussion on the myna topic. The Minimising Myna Website aids public education on the issue. The Canberra Indian Myna Action Group is a community group that has developed a number of strategies, including public education and a trapping program, to tackle the common myna. CIMAG's trapping program has been highly successful and has humanely removed over 12 000 Mynas from around Canberra in around 18 months (CIMAG Undated).

Research: Kate Grarock is undertaking a PhD research project at Australian National University on the impact of Indian Mynas on native birds and the impact of trapping activity in the Canberra region.

Pathway

In Israel, mynas escaped from a private facility of exotic birds in the centre of the Tel Aviv public park. On oceanic islands, invasion pathways appear to be primarily via ships, particularly large ferries (Tearika 2003, D. Wattling Pers. Comm.). The pathway to the Spanish islands has been through pet shops and later escapes from the home cages. Introduced by acclimatisation societies.

Principal source:
GLOBAL INVASIVE SPECIES DATABASE
FULL ACCOUNT FOR: *Acridotheres tristis*

Compiler: IUCN/SSC Invasive Species Specialist Group (ISSG)
Updates on management information with support from the Overseas Territories Environmental Programme (OTEP) project XOT603, a joint project with the Cayman Islands Government - Department of Environment

Review:

Publication date: 2011-07-04

ALIEN RANGE

<table>
<thead>
<tr>
<th>No</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>AMERICAN SAMOA</td>
</tr>
<tr>
<td>[2]</td>
<td>BRUNEI DARUSSALAM</td>
</tr>
<tr>
<td>[7]</td>
<td>COOK ISLANDS</td>
</tr>
<tr>
<td>[1]</td>
<td>FRANCE</td>
</tr>
<tr>
<td>[1]</td>
<td>HONG KONG</td>
</tr>
<tr>
<td>[1]</td>
<td>INDONESIA</td>
</tr>
<tr>
<td>[2]</td>
<td>ISRAEL</td>
</tr>
<tr>
<td>[1]</td>
<td>KUWAIT</td>
</tr>
<tr>
<td>[1]</td>
<td>MALDIVES</td>
</tr>
<tr>
<td>[1]</td>
<td>MAYOTTE</td>
</tr>
<tr>
<td>[4]</td>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>[1]</td>
<td>QATAR</td>
</tr>
<tr>
<td>[1]</td>
<td>RUSSIAN FEDERATION</td>
</tr>
<tr>
<td>[2]</td>
<td>SAMOA</td>
</tr>
<tr>
<td>[5]</td>
<td>SEYCHELLES</td>
</tr>
<tr>
<td>[4]</td>
<td>SOLOMON ISLANDS</td>
</tr>
<tr>
<td>[1]</td>
<td>SPAIN</td>
</tr>
<tr>
<td>[1]</td>
<td>TURKEY</td>
</tr>
<tr>
<td>[7]</td>
<td>UNITED STATES</td>
</tr>
<tr>
<td>[2]</td>
<td>VANUATU</td>
</tr>
</tbody>
</table>

Red List assessed species 40: CR = 5; EN = 7; VU = 9; NT = 3; LC = 16;

- *Acrocephalus caffer* EN
- *Acr. m. mendanae* LC
- *Aplonis cinerascens* VU
- *Charadrius sanctaehelenae* CR
- *Copsychus saularis* LC
- *Coracina typica* VU
- *Dacelo novaeguineae* LC
- *Gerygone igata* LC
- *Humboltia flavirostris* EN
- *Jynx ruficollis* LC
- *Otus insularis* EN
- *Passer melanurus* LC
- *Cacatua roseicapilla* LC
- *C. k. krearako* NT
- *C. r. rimatarae* VU
- *Charadrius sanctaehelenae* CR
- *Collocalia leucophaea* VU
- *Copsychus sechellarum* EN
- *Coracina typica* VU
- *C. n. novaeguineae* LC
- *Dendrocopos syriacus* LC
- *Gerygone igata* LC
- *Hemiphaga novaeseelandiae* NT
- *H. o. olivaceus* VU
- *H. o. capnodes* CR
- *Otus pauliani* CR
- *Petaurus breviceps* LC

FULL ACCOUNT FOR: *Acridotheres tristis*

BIBLIOGRAPHY

95 references found for *Acridotheres tristis*

Management information

Summary: This report reviews available information on the adverse effects of 14 alien vertebrates considered to be significant invasive species on islands of the South Pacific and Hawaii, supplementing the authors' experience with that of other workers.

Summary: Available from: http://www.islandbiodiversity.com/Phelsuma%2019d.pdf [Accessed 2 July 2011]

Department of Agriculture and Food, 2008. National Animal Pest Alert: Common myna. Department of Agriculture and Food the State of Western Australia

Summary: Available from: http://www.agric.wa.gov.au/content/PW/vp/bird/CommonMyna_NHT.pdf [Accessed 3 July 2008]

Summary: Notes on invasive characteristics.

Summary: In Hebrew.

Summary: The IUCN Red List of Threatened Species provides taxonomic, conservation status and distribution information on taxa that have been globally evaluated using the IUCN Red List Categories and Criteria. This system is designed to determine the relative risk of extinction, and the main purpose of the IUCN Red List is to catalogue and highlight those taxa that are facing a higher risk of global extinction (i.e. those listed as Critically Endangered, Endangered and Vulnerable). The IUCN Red List also includes information on taxa that are categorized as Extinct or Extinct in the Wild; on taxa that cannot be evaluated because of insufficient information (i.e. are Data Deficient); and on taxa that are either close to meeting the threatened thresholds or that would be threatened were it not for an ongoing taxon-specific conservation programme (i.e. are Near Threatened).

Summary: This compilation of information sources can be sorted on keywords for example: Baits & Lures, Non Target Species, Eradication, Monitoring, Risk Assessment, Weeds, Herbicides etc. This compilation is at present in Excel format, this will be web-enabled as a searchable database shortly. This version of the database has been developed by the IUCN SSC ISSG as part of an Overseas Territories Environmental Programme funded project XOT603 in partnership with the Cayman Islands Government - Department of Environment. The compilation is a work under progress, the ISSG will manage, maintain and enhance the database with current and newly published information, reports, journal articles etc.

Summary: Long term management issues.

Summary: Land use in Singapore and the presence of invasive birds.

Northland Regional Council. Undated. Home > Environment > Weed and pest control > Pest animals > Myna

Saavedra, Susana, 2009. First control campaign for common myna Acridotheres tristis on Ascension Island. Live Arico Invasive Species Department

Summary: Useful information, including how to trap and humanely dispose of mynas. Limited stocks of myna traps are available for sale - if you wish to purchase a trap please express interest via the web site. If you represent a group and would like your web site to be linked to the anu myna site - please email myna@anu.edu.au with Myna Group in the subject line and the url of your web site in the text of the message. Please keep your message brief.

Summary: The web site provides information on a new, expanded, trial of myna traps in Canberra suburbs commencing in March 2004.

Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009]

Summary: Integrated management of myna by the restoration of vulnerable island ecosystems. Available from: http://www.wildland.co.nz/projects/norsketasman/norske_project.htm [Accessed 07 December 2005]

General information

Summary: Biological information. Available from: http://www.birdsinbackyards.net/finder/display.cfm?id=36 [Accessed 10 November 2009]

Summary: Available from: http://cookislands.bishopmuseum.org/species.asp?id=8262 [Accessed 29 October 2007]

Summary: In depth study of physical differences between male and female mynas. CSN 1972. Classified Summarised Notes. Notornis 23: 89.

Summary: Available from: http://www.issg.org/cgi/Electronic%20references/pli/Myna_review_final.pdf [Accessed 10 November 2009]

Notes on uses.

Summary: Consequences to the biodiversity of New Caledonia of the introduction of plant and animal species.

Summary: Description of myna.

Summary: Invasive characteristics.

Summary: Fact Sheet

Summary: Overview of control measures in place in Israel against the common myna c. 2001.

Summary: An online database that provides taxonomic information, common names, synonyms and geographical jurisdiction of a species. In addition links are provided to retrieve biological records and collection information from the Global Biodiversity Information Facility (GBIF) Data Portal and bioscience articles from BioOne journals.

Summary: Behaviour and ecology.

Summary: Mentions the role of the common myna on the spread of invasive plants in Hawaii (which are a major threat to the survival of Hawaii s native flora).

Summary: Mentions the role of the common myna in New Caledonia and the introduction of the species in other islands.

GLOBAL INVASIVE SPECIES DATABASE

FULL ACCOUNT FOR: *Acridotheres tristis*

Summary: Available from: http://www.and.nic.in/Know%20Andaman/faunalwealth/faunal_wealth.htm [Accessed 03 November 2009]

Summary: Les auteurs ont rassemblé des données écologiques sur les oiseaux terrestres endémiques, les animaux introduits et les habitats. Avec la chasse et la destruction des habitats, les introductions de prédateurs ont joué un rôle majeur dans la régression et l’extinction de plusieurs espèces d’oiseaux. La radication rapide de ces prédateurs, associée à des ré-introductions d’oiseaux, constituerait la manière la plus efficace pour assurer la survie des espèces restantes.

Summary: Biological information.

Tidemann, C. 2007d. *Common Indian Myna Website* > *Are Mynas spreading?*. The Australian National University.

Summary: Roost characteristics.